Anthony S Weiss

List of Publications by Citations

Source: https://exaly.com/author-pdf/6274648/anthony-s-weiss-publications-by-citations.pdf

Version: 2024-04-29

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

11,280 231 57 97 h-index g-index citations papers 6.47 245 12,445 7.7 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
231	Electrospun protein fibers as matrices for tissue engineering. <i>Biomaterials</i> , 2005 , 26, 5999-6008	15.6	665
230	Biochemistry of tropoelastin. <i>FEBS Journal</i> , 1998 , 258, 1-18		369
229	Elastin. Advances in Protein Chemistry, 2005 , 70, 437-61		368
228	Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing. <i>Biomaterials</i> , 2017 , 139, 229-243	15.6	273
227	A multilayered synthetic human elastin/polycaprolactone hybrid vascular graft with tailored mechanical properties. <i>Acta Biomaterialia</i> , 2011 , 7, 295-303	10.8	234
226	Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. <i>Nature Biotechnology</i> , 2010 , 28, 1123-8	44.5	217
225	Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. <i>Biomaterials</i> , 2004 , 25, 4921-7	15.6	211
224	Protein-based composite materials. <i>Materials Today</i> , 2012 , 15, 208-215	21.8	204
223	Highly Elastic and Conductive Human-Based Protein Hybrid Hydrogels. <i>Advanced Materials</i> , 2016 , 28, 40-9	24	187
222	Increasing the pore size of electrospun scaffolds. <i>Tissue Engineering - Part B: Reviews</i> , 2011 , 17, 365-72	7.9	182
221	Coacervation characteristics of recombinant human tropoelastin. <i>FEBS Journal</i> , 1997 , 250, 92-8		181
220	Elastin-based materials. <i>Chemical Society Reviews</i> , 2010 , 39, 3371-9	58.5	177
219	Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. <i>Advanced Functional Materials</i> , 2013 , 23, 4950	15.6	173
218	Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. <i>Gene</i> , 1995 , 154, 159-66	3.8	173
217	Engineering a highly elastic human protein-based sealant for surgical applications. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	170
216	Tropoelastin. International Journal of Biochemistry and Cell Biology, 2009, 41, 494-7	5.6	168
215	Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14405-10	11.5	153

(2006-2009)

214	Synthesis of highly porous crosslinked elastin hydrogels and their interaction with fibroblasts in vitro. <i>Biomaterials</i> , 2009 , 30, 4550-7	15.6	149
213	Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4322-7	11.5	149
212	Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. Journal of Biological Chemistry, 2009 , 284, 28616-23	5.4	134
211	Biomaterials derived from silk-tropoelastin protein systems. <i>Biomaterials</i> , 2010 , 31, 8121-31	15.6	130
210	Molecular basis of elastic fiber formation. Critical interactions and a tropoelastin-fibrillin-1 cross-link. <i>Journal of Biological Chemistry</i> , 2004 , 279, 23748-58	5.4	124
209	The fabrication of elastin-based hydrogels using high pressure CO(2). <i>Biomaterials</i> , 2009 , 30, 1-7	15.6	121
208	Electrospun synthetic human elastin:collagen composite scaffolds for dermal tissue engineering. <i>Acta Biomaterialia</i> , 2012 , 8, 3714-22	10.8	120
207	Structural disorder and dynamics of elastin. <i>Biochemistry and Cell Biology</i> , 2010 , 88, 239-50	3.6	120
206	Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. <i>Journal of Biological Chemistry</i> , 1999 , 274, 21719-24	5.4	117
205	Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. <i>Journal of Biological Chemistry</i> , 2001 , 276, 39661-6	5.4	115
204	Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. <i>Biomaterials</i> , 2009 , 30, 1675-81	15.6	110
203	Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. <i>Acta Biomaterialia</i> , 2010 , 6, 354-9	10.8	101
202	Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. <i>Biomaterials</i> , 2010 , 31, 1655-65	15.6	100
201	Tropoelastin: a versatile, bioactive assembly module. <i>Acta Biomaterialia</i> , 2014 , 10, 1532-41	10.8	96
200	Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. <i>Biochimie</i> , 2004 , 86, 173-8	4.6	94
199	Hydrogel-coated microfluidic channels for cardiomyocyte culture. <i>Lab on A Chip</i> , 2013 , 13, 3569-77	7.2	92
198	Cellular interactions with elastin. <i>Pathologie Et Biologie</i> , 2005 , 53, 390-8		91
197	Tropoelastin massively associates during coacervation to form quantized protein spheres. <i>Biochemistry</i> , 2006 , 45, 9989-96	3.2	91

196	Haemonchus contortus: sequence heterogeneity of internucleotide binding domains from P-glycoproteins. <i>Experimental Parasitology</i> , 1999 , 91, 250-7	2.1	91
195	Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. <i>Biochemical Journal</i> , 2005 , 388, 1-5	3.8	90
194	Engineered cell-laden human protein-based elastomer. <i>Biomaterials</i> , 2013 , 34, 5496-505	15.6	85
193	High resolution NMR solution structure of the leucine zipper domain of the c-Jun homodimer. Journal of Biological Chemistry, 1996 , 271, 13663-7	5.4	85
192	The immobilization of recombinant human tropoelastin on metals using a plasma-activated coating to improve the biocompatibility of coronary stents. <i>Biomaterials</i> , 2010 , 31, 8332-40	15.6	84
191	Elastin signaling in wound repair. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 248-57		83
190	Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin. <i>Biomaterials</i> , 2009 , 30, 6469-77	15.6	83
189	Elastin as a nonthrombogenic biomaterial. <i>Tissue Engineering - Part B: Reviews</i> , 2011 , 17, 93-9	7.9	80
188	Large-Scale Investigation of Leishmania Interaction Networks with Host Extracellular Matrix by Surface Plasmon Resonance Imaging. <i>Infection and Immunity</i> , 2014 , 82, 1741-1741	3.7	78
187	Engineered tropoelastin and elastin-based biomaterials. <i>Advances in Protein Chemistry and Structural Biology</i> , 2009 , 78, 1-24	5.3	78
186	Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. <i>Journal of Biological Chemistry</i> , 2005 , 280, 30526-37	5.4	77
185	Fabricated Elastin. <i>Advanced Healthcare Materials</i> , 2015 , 4, 2530-2556	10.1	74
184	In situ polymerization of tropoelastin in the absence of chemical cross-linking. <i>Biomaterials</i> , 2009 , 30, 431-5	15.6	71
183	Severe burn injuries and the role of elastin in the design of dermal substitutes. <i>Tissue Engineering - Part B: Reviews</i> , 2011 , 17, 81-91	7.9	70
182	Degradation of tropoelastin by matrix metalloproteinasescleavage site specificities and release of matrikines. <i>FEBS Journal</i> , 2010 , 277, 1939-56	5.7	67
181	Hydrophobic domains of human tropoelastin interact in a context-dependent manner. <i>Journal of Biological Chemistry</i> , 2001 , 276, 44575-80	5.4	67
180	Elastomeric Recombinant Protein-based Biomaterials. <i>Biochemical Engineering Journal</i> , 2013 , 77, 110-11	184.2	66
179	Surface plasma modification and tropoelastin coating of a polyurethane co-polymer for enhanced cell attachment and reduced thrombogenicity. <i>Biomaterials</i> , 2014 , 35, 6797-809	15.6	65

(2005-2005)

178	Specificity in the coacervation of tropoelastin: solvent exposed lysines. <i>Journal of Structural Biology</i> , 2005 , 149, 273-81	3.4	65	
177	Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties. <i>Biomaterials</i> , 2014 , 35, 5425-35	15.6	63	
176	Binding of the cell adhesive protein tropoelastin to PTFE through plasma immersion ion implantation treatment. <i>Biomaterials</i> , 2011 , 32, 5100-11	15.6	63	
175	A unique DNA intermediate associated with termination of chromosome replication in Bacillus subtilis. <i>Cell</i> , 1984 , 39, 683-9	56.2	62	
174	A novel cell adhesion region in tropoelastin mediates attachment to integrin VB. <i>Journal of Biological Chemistry</i> , 2014 , 289, 1467-77	5.4	56	
173	Coacervation is promoted by molecular interactions between the PF2 segment of fibrillin-1 and the domain 4 region of tropoelastin. <i>Biochemistry</i> , 2005 , 44, 10271-81	3.2	55	
172	A model two-component system for studying the architecture of elastin assembly in vitro. <i>Journal of Structural Biology</i> , 2005 , 149, 282-9	3.4	55	
171	Structural changes and facilitated association of tropoelastin. <i>Archives of Biochemistry and Biophysics</i> , 2003 , 410, 317-23	4.1	55	
170	The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. <i>Biomaterials</i> , 2010 , 31, 2526-34	15.6	54	
169	In vivo biocompatibility of a plasma-activated, coronary stent coating. <i>Biomaterials</i> , 2012 , 33, 7984-92	15.6	53	
168	Photocrosslinkable Gelatin/Tropoelastin Hydrogel Adhesives for Peripheral Nerve Repair. <i>Tissue Engineering - Part A</i> , 2018 , 24, 1393-1405	3.9	51	
167	Biocompatibility of silk-tropoelastin protein polymers. <i>Biomaterials</i> , 2014 , 35, 5138-47	15.6	50	
166	Tropoelastin bridge region positions the cell-interactive C terminus and contributes to elastic fiber assembly. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 2878-83	11.5	49	
165	Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. <i>Matrix Biology</i> , 2008 , 27, 420-8	11.4	49	
164	Charge-Tunable Silk-Tropoelastin Protein Alloys That Control Neuron Cell Responses. <i>Advanced Functional Materials</i> , 2013 , 23, 3875-3884	15.6	48	
163	Characterization of an acetylcholine receptor gene of Haemonchus contortus in relation to levamisole resistance. <i>Molecular and Biochemical Parasitology</i> , 1997 , 84, 179-87	1.9	48	
162	Biomaterials and Modifications in the Development of Small-Diameter Vascular Grafts. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 712-723	5.5	47	
161	Heparan sulphate interacts with tropoelastin, with some tropoelastin peptides and is present in human dermis elastic fibers. <i>Matrix Biology</i> , 2005 , 24, 15-25	11.4	46	

160	Restriction map of DNA spanning the replication terminus of the Bacillus subtilis chromosome. Journal of Molecular Biology, 1983 , 171, 119-37	6.5	46
159	Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. Journal of Biomedical Materials Research - Part A, 2012 , 100, 155-61	5.4	45
158	The action of neutrophil serine proteases on elastin and its precursor. <i>Biochimie</i> , 2012 , 94, 192-202	4.6	45
157	Stages in tropoelastin coalescence during synthetic elastin hydrogel formation. <i>Micron</i> , 2010 , 41, 268-7	22.3	44
156	Elastin architecture. <i>Matrix Biology</i> , 2019 , 84, 4-16	11.4	43
155	Human-Recombinant-Elastin-Based Bioinks for 3D Bioprinting of Vascularized Soft Tissues. <i>Advanced Materials</i> , 2020 , 32, e2003915	24	43
154	Linker-free covalent attachment of the extracellular matrix protein tropoelastin to a polymer surface for directed cell spreading. <i>Acta Biomaterialia</i> , 2009 , 5, 3371-81	10.8	42
153	Tropoelastin coated PLLA-PLGA scaffolds promote vascular network formation. <i>Biomaterials</i> , 2017 , 122, 72-82	15.6	41
152	Computational smart polymer design based on elastin protein mutability. <i>Biomaterials</i> , 2017 , 127, 49-6	015.6	39
151	Mechanical Properties of Plasma Immersion Ion Implanted PEEK for Bioactivation of Medical Devices. <i>ACS Applied Materials & ACS ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	39
150	In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. <i>Matrix Biology</i> , 2009 , 28, 84-91	11.4	39
149	Covalent attachment of functional protein to polymer surfaces: a novel one-step dry process. Journal of the Royal Society Interface, 2008, 5, 663-9	4.1	39
148	Elastin Biomaterials in Dermal Repair. <i>Trends in Biotechnology</i> , 2020 , 38, 280-291	15.1	39
147	Silk-tropoelastin protein films for nerve guidance. Acta Biomaterialia, 2015, 14, 1-10	10.8	38
146	Domains 17-27 of tropoelastin contain key regions of contact for coacervation and contain an unusual turn-containing crosslinking domain. <i>Matrix Biology</i> , 2007 , 26, 125-35	11.4	38
145	Thermodynamic and hydrodynamic properties of human tropoelastin. Analytical ultracentrifuge and pulsed field-gradient spin-echo NMR studies. <i>Journal of Biological Chemistry</i> , 2001 , 276, 28042-50	5.4	38
144	A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues. <i>Redox Biology</i> , 2015 , 5, 101-113	11.3	37
143	Plasma-based biofunctionalization of vascular implants. <i>Nanomedicine</i> , 2012 , 7, 1907-16	5.6	37

(2014-1995)

142	Tandem integration of multiple ILV5 copies and elevated transcription in polyploid yeast. <i>Yeast</i> , 1995 , 11, 311-6	3.4	37	
141	The use of plasma-activated covalent attachment of early domains of tropoelastin to enhance vascular compatibility of surfaces. <i>Biomaterials</i> , 2013 , 34, 7584-91	15.6	36	
140	Cell patterning via linker-free protein functionalization of an organic conducting polymer (polypyrrole) electrode. <i>Acta Biomaterialia</i> , 2012 , 8, 2538-48	10.8	36	
139	Fabrication Techniques for Vascular and Vascularized Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2019 , 8, e1900742	10.1	35	
138	Building Elastin. Incorporation of recombinant human tropoelastin into extracellular matrices using nonelastogenic rat-1 fibroblasts as a source for lysyl oxidase. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2001 , 24, 733-9	5.7	35	
137	Injectable and Magnetic Responsive Hydrogels with Bioinspired Ordered Structures. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 1392-1404	5.5	34	
136	Tropoelastin incorporation into a dermal regeneration template promotes wound angiogenesis. <i>Advanced Healthcare Materials</i> , 2015 , 4, 577-84	10.1	34	
135	Subtle balance of tropoelastin molecular shape and flexibility regulates dynamics and hierarchical assembly. <i>Science Advances</i> , 2016 , 2, e1501145	14.3	34	
134	Covalently Bound Biomimetic Layers on Plasma Polymers with Graded Metallic Interfaces for in vivo Implants. <i>Plasma Processes and Polymers</i> , 2009 , 6, 658-666	3.4	33	
133	Glycosaminoglycan-mediated coacervation of tropoelastin abolishes the critical concentration, accelerates coacervate formation, and facilitates spherule fusion: implications for tropoelastin microassembly. <i>Biomacromolecules</i> , 2008 , 9, 1739-44	6.9	32	
132	Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2042-2051	11.5	31	
131	Elastin-based biomaterials and mesenchymal stem cells. <i>Biomaterials Science</i> , 2015 , 3, 800-9	7.4	31	
130	Elastin sequences trigger transient proinflammatory responses by human dermal fibroblasts. <i>FASEB Journal</i> , 2013 , 27, 3455-65	0.9	31	
129	Flexibility in the solution structure of human tropoelastin. <i>Biochemistry</i> , 2007 , 46, 8196-205	3.2	31	
128	Tropoelastin inhibits intimal hyperplasia of mouse bioresorbable arterial vascular grafts. <i>Acta Biomaterialia</i> , 2017 , 52, 74-80	10.8	30	
127	Development of a sensitive peptide-based immunoassay: application to detection of the Jun and Fos oncoproteins. <i>Biochemistry</i> , 1996 , 35, 9069-75	3.2	30	
126	Freestanding hierarchical vascular structures engineered from ice. <i>Biomaterials</i> , 2019 , 192, 334-345	15.6	30	
125	Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging. <i>Infection and Immunity</i> , 2014 , 82, 594-606	3.7	28	

124	Tropoelastin as a thermodynamically unfolded premolten globule protein: The effect of trimethylamine N-oxide on structure and coacervation. <i>Archives of Biochemistry and Biophysics</i> , 2009 , 487, 79-84	4.1	28
123	Transposon-mediated restriction mapping of the Bacillus subtilis chromosome. <i>Gene</i> , 1989 , 78, 29-36	3.8	27
122	Transient tropoelastin nanoparticles are early-stage intermediates in the coacervation of human tropoelastin whose aggregation is facilitated by heparan sulfate and heparin decasaccharides. <i>Matrix Biology</i> , 2010 , 29, 152-9	11.4	26
121	Molecular model of human tropoelastin and implications of associated mutations. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 7338-7343	11.5	26
120	Lamin A expression levels are unperturbed at the normal and mutant alleles but display partial splice site selection in Hutchinson-Gilford progeria syndrome. <i>Journal of Medical Genetics</i> , 2004 , 41, 715	- 5 ⁸	25
119	Effect of dense gas CO2 on the coacervation of elastin. <i>Biomacromolecules</i> , 2008 , 9, 1100-5	6.9	24
118	A cell adhesive peptide from tropoelastin promotes sequential cell attachment and spreading via distinct receptors. <i>FEBS Journal</i> , 2017 , 284, 2216-2230	5.7	23
117	Tropoelastin-Coated Tendon Biomimetic Scaffolds Promote Stem Cell Tenogenic Commitment and Deposition of Elastin-Rich Matrix. <i>ACS Applied Materials & Deposition of Elastin-Rich Matrix</i> . <i>ACS Applied Materials & Deposition of Elastin-Rich Matrix</i> .	9.5	23
116	Molecular-level characterization of elastin-like constructs and human aortic elastin. <i>Matrix Biology</i> , 2014 , 38, 12-21	11.4	23
115	Elastin in asthma. <i>Pulmonary Pharmacology and Therapeutics</i> , 2012 , 25, 144-53	3.5	23
114	Yeast artificial chromosomes: rapid extraction for high resolution analysis. <i>Nucleic Acids Research</i> , 1990 , 18, 2193	20.1	23
113	Impediment to replication fork movement in the terminus region of the Bacillus subtilis chromosome. <i>Journal of Molecular Biology</i> , 1984 , 179, 745-50	6.5	23
112	Design of an elastin-layered dermal regeneration template. <i>Acta Biomaterialia</i> , 2017 , 52, 33-40	10.8	22
111	Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2: cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. <i>Journal of Biological Chemistry</i> ,	5.4	22
110	Deficient coacervation of two forms of human tropoelastin associated with supravalvular aortic stenosis. <i>FEBS Journal</i> , 1999 , 266, 308-14		22
109	Cloning and sequence analysis of the candidate nicotinic acetylcholine receptor alpha subunit gene tar-1 from Trichostrongylus colubriformis. <i>Gene</i> , 1996 , 182, 97-100	3.8	22
108	Tropoelastin Implants That Accelerate Wound Repair. Advanced Healthcare Materials, 2018, 7, e1701206	510.1	21
107	HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility. <i>Carbon</i> , 2018 , 139, 118-128	10.4	21

106	Structure and activity of Aspergillus nidulans copper amine oxidase. <i>Biochemistry</i> , 2011 , 50, 5718-30	3.2	21
105	BREWING YEAST IDENTIFICATION AND CHROMOSOME ANALYSIS USING HIGH RESOLUTION CHEF GEL ELECTROPHORESIS. <i>Journal of the Institute of Brewing</i> , 1991 , 97, 163-167	2	21
104	Force fields for simulating the interaction of surfaces with biological molecules. <i>Interface Focus</i> , 2016 , 6, 20150045	3.9	20
103	Aggrecan expression is substantially and abnormally upregulated in Hutchinson-Gilford Progeria Syndrome dermal fibroblasts. <i>Mechanisms of Ageing and Development</i> , 2006 , 127, 660-9	5.6	20
102	Proteomic analysis of the genetic premature aging disease Hutchinson Gilford progeria syndrome reveals differential protein expression and glycosylation. <i>Journal of Proteome Research</i> , 2003 , 2, 556-7	5.6	20
101	Hyaluronic acid in progeria and the aged phenotype?. <i>Gerontology</i> , 1992 , 38, 139-52	5.5	20
100	Plasma-Activated Tropoelastin Functionalization of Zirconium for Improved Bone Cell Response. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 662-676	5.5	20
99	Elastic proteins and elastomeric protein alloys. Current Opinion in Biotechnology, 2016, 39, 56-60	11.4	19
98	A negatively charged residue stabilizes the tropoelastin N-terminal region for elastic fiber assembly. <i>Journal of Biological Chemistry</i> , 2014 , 289, 34815-26	5.4	19
97	An immobilized fork as a termination of replication intermediate in Bacillus subtilis. <i>Journal of Molecular Biology</i> , 1986 , 188, 199-205	6.5	19
96	Elastomers in vascular tissue engineering. Current Opinion in Biotechnology, 2016, 40, 149-154	11.4	19
95	Optically robust, highly permeable and elastic protein films that support dual cornea cell types. <i>Biomaterials</i> , 2019 , 188, 50-62	15.6	19
94	Conservation of the 168 divIB gene in Bacillus subtilis W23 and B. licheniformis, and evidence for homology to ftsQ of Escherichia coli. <i>Gene</i> , 1994 , 147, 85-9	3.8	18
93	Fabricating Organized Elastin in Vascular Grafts. <i>Trends in Biotechnology</i> , 2021 , 39, 505-518	15.1	18
92	Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. <i>Acta Biomaterialia</i> , 2019 , 91, 112-122	10.8	17
91	Depth-Resolved Structural and Compositional Characterization of Ion-Implanted Polystyrene that Enables Direct Covalent Immobilization of Biomolecules. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 167	793 ⁸ 168	363
90	Microfibril-associated glycoprotein-1 binding to tropoelastin: multiple binding sites and the role of divalent cations. <i>FEBS Journal</i> , 2004 , 271, 3085-90		17
89	A sterilizable, biocompatible, tropoelastin surface coating immobilized by energetic ion activation. <i>Journal of the Royal Society Interface</i> , 2017 , 14,	4.1	16

88	Synthetic elastin hydrogels that are coblended with heparin display substantial swelling, increased porosity, and improved cell penetration. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 95, 12	15-212	16
87	The N-terminal A domain of Staphylococcus aureus fibronectin-binding protein A binds to tropoelastin. <i>Biochemistry</i> , 2007 , 46, 7226-32	3.2	16
86	The hydrophobic domain 26 of human tropoelastin is unstructured in solution. <i>Journal of Structural Biology</i> , 2005 , 150, 154-62	3.4	16
85	Tropoelastin is a Flexible Molecule that Retains its Canonical Shape. <i>Macromolecular Bioscience</i> , 2019 , 19, e1800250	5.5	16
84	Tropoelastin and Elastin Assembly. Frontiers in Bioengineering and Biotechnology, 2021, 9, 643110	5.8	16
83	Plasma ion implantation enabled bio-functionalization of PEEK improves osteoblastic activity. <i>APL Bioengineering</i> , 2018 , 2, 026109	6.6	16
82	The elastin matrix in tissue engineering and regeneration. <i>Current Opinion in Biomedical Engineering</i> , 2018 , 6, 27-32	4.4	15
81	Blended Polyurethane and Tropoelastin as a Novel Class of Biologically Interactive Elastomer. <i>Tissue Engineering - Part A</i> , 2016 , 22, 524-33	3.9	15
80	Immobilisation of a fibrillin-1 fragment enhances the biocompatibility of PTFE. <i>Colloids and Surfaces B: Biointerfaces</i> , 2014 , 116, 544-52	6	15
79	The S-star trial bioinformatics course: An on-line learning success*. <i>Biochemistry and Molecular Biology Education</i> , 2003 , 31, 20-23	1.3	15
78	Cloning DNA from the replication terminus region of the Bacillus subtilis chromosome. <i>Gene</i> , 1983 , 24, 83-91	3.8	15
77	Electrodeposited gels prepared from protein alloys. <i>Nanomedicine</i> , 2015 , 10, 803-14	5.6	14
76	Plasma Ion Activated Expanded Polytetrafluoroethylene Vascular Grafts with a Covalently Immobilized Recombinant Human Tropoelastin Coating Reducing Neointimal Hyperplasia. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 1286-1297	5.5	14
75	Targeted Modulation of Tropoelastin Structure and Assembly. <i>ACS Biomaterials Science and Engineering</i> , 2017 , 3, 2832-2844	5.5	14
74	Stability of a therapeutic layer of immobilized recombinant human tropoelastin on a plasma-activated coated surface. <i>Pharmaceutical Research</i> , 2011 , 28, 1415-21	4.5	14
73	The nicotinic acetylcholine alpha-subunit gene tar-1 is located on the X chromosome but its coding sequence is not involved in levamisole resistance in an isolate of Trichostrongylus colubriformis. <i>Molecular and Biochemical Parasitology</i> , 1997 , 90, 415-22	1.9	14
72	The solution structure of the leucine zipper motif of the Jun oncoprotein homodimer. <i>FEBS Journal</i> , 1993 , 214, 415-24		14
71	Direct covalent coupling of proteins to nanostructured plasma polymers: a route to tunable cell adhesion. <i>Applied Surface Science</i> , 2015 , 351, 537-545	6.7	13

(2016-2017)

70	Plasma mediated protein immobilisation enhances the vascular compatibility of polyurethane with tissue matched mechanical properties. <i>Biomedical Materials (Bristol)</i> , 2017 , 12, 045002	3.5	13	
69	Homology models for domains 21-23 of human tropoelastin shed light on lysine crosslinking. <i>Biochemical and Biophysical Research Communications</i> , 2010 , 396, 870-3	3.4	13	
68	Plasma treatment in air at atmospheric pressure that enables reagent-free covalent immobilization of biomolecules on polytetrafluoroethylene (PTFE). <i>Applied Surface Science</i> , 2020 , 518, 146128	6.7	12	
67	Coarse-grained model of tropoelastin self-assembly into nascent fibrils. <i>Materials Today Bio</i> , 2019 , 3, 100016	9.9	12	
66	Tropoelastin modulates TGF-II-induced expression of VEGF and CTGF in airway smooth muscle cells. <i>Matrix Biology</i> , 2013 , 32, 407-13	11.4	12	
65	Multifunctional silk-tropoelastin biomaterial systems. <i>Israel Journal of Chemistry</i> , 2013 , 53, 777-786	3.4	12	
64	"Setting paint" analogy for the hydrophobic self-association of tropoelastin into elastin-like hydrogel. <i>Biopolymers</i> , 2009 , 91, 321-30	2.2	12	
63	Cloning, expression, and spectroscopic studies of the Jun leucine zipper domain. <i>FEBS Journal</i> , 1994 , 219, 877-86		12	
62	Does progeria provide the best model of accelerated ageing in humans?. <i>Gerontology</i> , 1990 , 36, 84-98	5.5	12	
61	Allysine modifications perturb tropoelastin structure and mobility on a local and global scale. <i>Matrix Biology Plus</i> , 2019 , 2, 100002	5.1	11	
60	Role for Cela1 in Postnatal Lung Remodeling and Alpha-1 Antitrypsin-Deficient Emphysema. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2018 , 59, 167-178	5.7	11	
59	Elastin biology and tissue engineering with adult cells. <i>Biomolecular Concepts</i> , 2013 , 4, 173-85	3.7	11	
58	A novel tropoelastin-based resorbable surgical mesh for pelvic organ prolapse repair. <i>Materials Today Bio</i> , 2020 , 8, 100081	9.9	10	
57	Promoting Tropoelastin Expression in Arterial and Venous Vascular Smooth Muscle Cells and Fibroblasts for Vascular Tissue Engineering. <i>Tissue Engineering - Part C: Methods</i> , 2016 , 22, 923-931	2.9	10	
56	Characterization of Endothelial Progenitor Cell Interactions with Human Tropoelastin. <i>PLoS ONE</i> , 2015 , 10, e0131101	3.7	10	
55	mle-1, a mariner-like transposable element in the nematode Trichostrongylus colubriformis. <i>Gene</i> , 1997 , 188, 235-7	3.8	10	
54	Engineering magnetically responsive tropoelastin spongy-like hydrogels for soft tissue regeneration. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1066-1075	7-3	9	
53	Tropoelastin enhances nitric oxide production by endothelial cells. <i>Nanomedicine</i> , 2016 , 11, 1591-7	5.6	9	

52	Cloning and structural analysis of partial acetylcholine receptor subunit genes from the parasitic nematode Teladorsagia circumcincta. <i>Veterinary Parasitology</i> , 2001 , 97, 329-35	2.8	9
51	Rapid method for preparation and cleavage of bacterial DNA for pulsed-field gel electrophoresis. <i>Nucleic Acids Research</i> , 1989 , 17, 814	20.1	9
50	Clinical Relevance of Elastin in the Structure and Function of Skin. <i>Aesthetic Surgery Journal Open Forum</i> , 2021 , 3, ojab019	1.3	9
49	Hierarchical assembly of elastin materials. <i>Current Opinion in Chemical Engineering</i> , 2019 , 24, 54-60	5.4	8
48	Molecular orientation of tropoelastin is determined by surface hydrophobicity. <i>Biomacromolecules</i> , 2012 , 13, 379-86	6.9	8
47	Tropoelastin Switch and Modulated Endothelial Cell Binding to PTFE. <i>BioNanoScience</i> , 2011 , 1, 123-127	3.4	8
46	A novel elastin gene mutation (1281delC) in a family with supravalvular aortic stenosis: a mutation cluster within exon 20. <i>Human Mutation</i> , 2001 , 17, 81	4.7	8
45	Interfacial asparagine residues within an amide tetrad contribute to Max helix-loop-helix leucine zipper homodimer stability. <i>Journal of Biological Chemistry</i> , 2000 , 275, 37454-61	5.4	8
44	Rational design of tropoelastin peptide-based inhibitors of metalloproteinases. <i>Archives of Biochemistry and Biophysics</i> , 2003 , 409, 335-40	4.1	7
43	Complementary mass spectrometric techniques to achieve complete sequence coverage of recombinant human tropoelastin. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 2989-93	2.2	7
42	Hutchinson-Gilford progeria types defined by differential binding of lectin DSA. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 1995 , 1270, 142-8	6.9	7
41	Elevated levels of glycoprotein gp200 in progeria fibroblasts. <i>Molecular and Cellular Biochemistry</i> , 1993 , 120, 51-60	4.2	7
40	Transglutaminase-Mediated Cross-Linking of Tropoelastin to Fibrillin Stabilises the Elastin Precursor Prior to Elastic Fibre Assembly. <i>Journal of Molecular Biology</i> , 2020 , 432, 5736-5751	6.5	7
39	Domains 12 to 16 of tropoelastin promote cell attachment and spreading through interactions with glycosaminoglycan and integrins alphaV and alpha5beta1. <i>FEBS Journal</i> , 2021 , 288, 4024-4038	5.7	7
38	Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. <i>Journal of Tissue Engineering and Regenerative Medicine</i> , 2017 , 11, 254	4 9 :256	64 ⁶
37	Tubular Fibrous Scaffolds Functionalized with Tropoelastin as a Small-Diameter Vascular Graft. <i>Biomacromolecules</i> , 2020 , 21, 3582-3595	6.9	6
36	Plasma processing of PDMS based spinal implants for covalent protein immobilization, cell attachment and spreading. <i>Journal of Materials Science: Materials in Medicine</i> , 2018 , 29, 178	4.5	6
35	Mechanistic insight into the elastin degradation process by the metalloprotease myroilysin from the deep-sea bacterium Myroides profundi D25. <i>Marine Drugs</i> , 2015 , 13, 1481-96	6	5

34	Elastin Based Constructs 2011 ,		5	
33	The Role of Elastin in Wound Healing and Dermal Substitute Design 2013 , 57-66		5	
32	Abnormal levels of serum antielastin antibodies in children with diabetes mellitus type 1. <i>Journal of Investigative Medicine</i> , 2006 , 54, 461-7	2.9	4	
31	A radioassay for synaptic core complex assembly: screening of herbal extracts for effectors. <i>Analytical Biochemistry</i> , 2006 , 357, 50-7	3.1	4	
30	Asn(78) and His(81) form a destabilizing locus within the Max HLH-LZ homodimer. <i>FEBS Letters</i> , 2001 , 509, 177-80	3.8	4	
29	Covalent Biofunctionalization of the Inner Surfaces of a Hollow-Fiber Capillary Bundle Using Packed-Bed Plasma Ion Implantation. <i>ACS Applied Materials & Description of the Inner Surfaces and Plasma Ion Implantation and Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces and Inner Surfaces are supplied to the Inner Surfaces are supplied t</i>	9.5	3	
28	Elastin Biopolymers 2011 , 329-346		3	
27	Electrospun Elastin-based Vascular Grafts. Heart Lung and Circulation, 2008, 17, S19	1.8	3	
26	Hutchinson-Gilford progeria fibroblasts exhibit metabolically normal uridine uptake and RNA synthetic rates. <i>Biochemical and Biophysical Research Communications</i> , 1995 , 210, 225-30	3.4	3	
25	Plasma-Activated Substrate with a Tropoelastin Anchor for the Maintenance and Delivery of Multipotent Adult Progenitor Cells. <i>Macromolecular Bioscience</i> , 2019 , 19, e1800233	5.5	3	
24	Tuneable cellulose nanocrystal and tropoelastin-laden hyaluronic acid hydrogels. <i>Journal of Biomaterials Applications</i> , 2019 , 34, 560-572	2.9	2	
23	Ion implanted, radical-rich surfaces for the rapid covalent immobilization of active biomolecules 2013 ,		2	
22	Biomechanics of Synthetic Elastin: Insights from Magnetic Resonance Microimaging. <i>Advanced Materials Research</i> , 2013 , 699, 457-463	0.5	2	
21	Plasma Treatment of ePTFE for Covalent Attachment of Human Elastin, and its Effects on Endothelialisation. <i>Heart Lung and Circulation</i> , 2009 , 18, S70	1.8	2	
20	Sex determination using the polymerase chain reaction. <i>Biochemical Education</i> , 1999 , 27, 237-239		2	
19	Emerging concepts in bone repair and the premise of soft materials <i>Current Opinion in Biotechnology</i> , 2021 , 74, 220-229	11.4	2	
18	Fuzzy binding model of molecular interactions between tropoelastin and integrin alphaVbeta3. <i>Biophysical Journal</i> , 2021 , 120, 3138-3151	2.9	2	
17	Tailoring the biofunctionality of collagen biomaterials via tropoelastin incorporation and EDC-crosslinking. <i>Acta Biomaterialia</i> , 2021 , 135, 150-163	10.8	2	

16	Cost-Effective Creation of Biofunctionalised Scaffolds, Tailored to Function as Stem Cell Niches for Expansion, Transport and Delivery. <i>Cytotherapy</i> , 2016 , 18, S60	4.8	1
15	Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation 2015,		1
14	A Novel Elastin-coated e-PTFE Vascular Conduit. <i>Heart Lung and Circulation</i> , 2010 , 19, 496-497	1.8	1
13	Elastin in Vascular Grafts 2020 , 379-410		1
12	Applications of Engineering Techniques in Microvasculature Design. <i>Frontiers in Cardiovascular Medicine</i> , 2021 , 8, 660958	5.4	1
11	Perspectives on the Molecular and Biological Implications of Tropoelastin in Human Tissue Elasticity. <i>Australian Journal of Chemistry</i> , 2016 , 69, 1380	1.2	1
10	Autosomal Recessive Cutis Laxa 1C Mutations Disrupt the Structure and Interactions of Latent TGFIBinding Protein-4. <i>Frontiers in Genetics</i> , 2021 , 12, 706662	4.5	1
9	Tropoelastin Promotes the Formation of Dense, Interconnected Endothelial Networks. <i>Biomolecules</i> , 2021 , 11,	5.9	1
8	Elastin in healthy and diseased lung. Current Opinion in Biotechnology, 2021, 74, 15-20	11.4	О
7	A step closer to elastogenesis on demand; Inducing mature elastic fibre deposition in a natural biomaterial scaffold. <i>Materials Science and Engineering C</i> , 2021 , 120, 111788	8.3	O
6	Synthesis of functionalized-thermo responsive-water soluble co-polymer for conjugation to protein for biomedical applications. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1498, 121-125		
5	In vitro studies of cells grown on the superconductor PrO(x)FeAs. <i>Micron</i> , 2009 , 40, 476-9	2.3	
4	Universal Biomolecule Binding Interlayers Created by Energetic Ion Bombardment. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1354, 3		
3	Towards development of a novel bio-engineered vascular bypass conduit. <i>Heart Lung and Circulation</i> , 2009 , 18, 79	1.8	
2	A Scal RFLP at the E-selectin (SELE) locus in a progeria family. <i>Human Molecular Genetics</i> , 1993 , 2, 825	5.6	