Yong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6274571/publications.pdf

Version: 2024-02-01

		218592	265120
122	2,719	26	42
papers	citations	h-index	g-index
135	135	135	1950
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS). Biotechnology for Biofuels, 2020, 13, 1.	6.2	188
2	Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis. Bioresource Technology, 2017, 234, 343-349.	4.8	140
3	Integrative process for sugarcane bagasse biorefinery to co-produce xylooligosaccharides and gluconic acid. Bioresource Technology, 2019, 282, 81-87.	4.8	94
4	Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts, 2021, 11, 309.	1.6	67
5	An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. Bioresource Technology, 2020, 307, 123200.	4.8	63
6	Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresource Technology, 2011, 102, 1663-1668.	4.8	61
7	Improving the performance of cell biocatalysis and the productivity of xylonic acid using a compressed oxygen supply. Biochemical Engineering Journal, 2015, 93, 196-199.	1.8	59
8	Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China. Science of the Total Environment, 2017, 595, 505-514.	3.9	58
9	Bio-utilization of cheese manufacturing wastes (cheese whey powder) for bioethanol and specific product (galactonic acid) production via a two-step bioprocess. Bioresource Technology, 2019, 272, 70-76.	4.8	56
10	Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Bioresource Technology, 2017, 244, 1137-1141.	4.8	54
11	Production of Xylooligosaccharides from Waste Xylan, Obtained from Viscose Fiber Processing, by Selective Hydrolysis Using Concentrated Acetic Acid. Journal of Wood Chemistry and Technology, 2017, 37, 1-9.	0.9	54
12	Enhanced Xylooligosaccharides Yields and Enzymatic Hydrolyzability of Cellulose using Acetic Acid Catalysis of Poplar Sawdust. Journal of Wood Chemistry and Technology, 2018, 38, 371-384.	0.9	53
13	An eco-friendly biorefinery strategy for xylooligosaccharides production from sugarcane bagasse using cellulosic derived gluconic acid as efficient catalyst. Bioresource Technology, 2019, 289, 121755.	4.8	53
14	Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues. Renewable Energy, 2021, 163, 732-739.	4.3	53
15	An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell. Carbohydrate Research, 2013, 382, 52-57.	1.1	50
16	Eco-friendly consolidated process for co-production of xylooligosaccharides and fermentable sugars using self-providing xylonic acid as key pretreatment catalyst. Biotechnology for Biofuels, 2019, 12, 272.	6.2	48
17	A novel recyclable furoic acid-assisted pretreatment for sugarcane bagasse biorefinery in co-production of xylooligosaccharides and glucose. Biotechnology for Biofuels, 2021, 14, 35.	6.2	42
18	Further Exploration of Sucrose–Citric Acid Adhesive: Investigation of Optimal Hot-Pressing Conditions for Plywood and Curing Behavior. Polymers, 2019, 11, 1996.	2.0	39

#	Article	lF	Citations
19	Simultaneous Separation and Quantification of Linear Xylo- and Cello-Oligosaccharides Mixtures in Lignocellulosics Processing Products on High-Performance Anion-Exchange Chromatography Coupled with Pulsed Amperometric Detection. BioResources, 2013, 8, .	0.5	38
20	Enhancement in xylonate production from hemicellulose pre-hydrolysate by powdered activated carbon treatment. Bioresource Technology, 2020, 316, 123944.	4.8	37
21	Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate. Bioresource Technology, 2018, 261, 288-293.	4.8	36
22	<i>Gluconobacter oxydans</i> (ATCC 621H) catalyzed oxidation of furfural for detoxification of furfural and bioproduction of furoic acid. Journal of Chemical Technology and Biotechnology, 2017, 92, 1285-1289.	1.6	33
23	Efficient Preparation of Xylonic Acid from Xylonate Fermentation Broth by Bipolar Membrane Electrodialysis. Applied Biochemistry and Biotechnology, 2019, 187, 396-406.	1.4	32
24	Upgrading Pectin Production from Apple Pomace by Acetic Acid Extraction. Applied Biochemistry and Biotechnology, 2019, 187, 1300-1311.	1.4	30
25	Spatial and temporal variations in criteria air pollutants in three typical terrain regions in Shaanxi, China, during 2015. Air Quality, Atmosphere and Health, 2018, 11, 95-109.	1.5	29
26	Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method. Bioresource Technology, 2020, 304, 122943.	4.8	29
27	Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass. Green Chemistry, 2021, 23, 6036-6049.	4.6	29
28	A comparative study of lignocellulosic nanofibrils isolated from celery using oxalic acid hydrolysis followed by sonication and mechanical fibrillation. Cellulose, 2019, 26, 5237-5246.	2.4	27
29	Cost-practical of glycolic acid bioproduction by immobilized whole-cell catalysis accompanied with compressed oxygen supplied to enhance mass transfer. Bioresource Technology, 2019, 283, 326-331.	4.8	27
30	Co-production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and sodium chlorite pretreatment. Industrial Crops and Products, 2020, 152, 112500.	2.5	27
31	Production of xylo-oligosaccharides from poplar by acetic acid pretreatment and its impact on inhibitory effect of poplar lignin. Bioresource Technology, 2021, 323, 124593.	4.8	27
32	Integrated production of gluconic acid and xylonic acid using dilute acid pretreated corn stover by two-stage fermentation. Biochemical Engineering Journal, 2018, 137, 18-22.	1.8	26
33	One-step continuous/semi-continuous whole-cell catalysis production of glycolic acid by a combining bioprocess with in-situ cell recycling and electrodialysis. Bioresource Technology, 2019, 273, 515-520.	4.8	26
34	Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob. Bioresource Technology, 2021, 342, 125979.	4.8	26
35	Integrated process for scalable bioproduction of glycolic acid from cell catalysis of ethylene glycol. Bioresource Technology, 2018, 268, 402-407.	4.8	25
36	Construction of physically crosslinked cellulose nanofibrils/alkali lignin/montmorillonoite/polyvinyl alcohol network hydrogel and its application in methylene blue removal. Cellulose, 2021, 28, 5531.	2.4	25

#	Article	IF	CITATIONS
37	Delignification of poplar for xylo-oligosaccharides production using lactic acid catalysis. Bioresource Technology, 2021, 342, 125943.	4.8	25
38	A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption. Journal of Cleaner Production, 2022, 331, 129878.	4.6	25
39	Comprehensive investigation of multiples factors in sulfuric acid pretreatment on the enzymatic hydrolysis of waste straw cellulose. Bioresource Technology, 2021, 340, 125740.	4.8	24
40	Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776. Bioprocess and Biosystems Engineering, 2014, 37, 2215-2222.	1.7	23
41	Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. Bioresource Technology, 2017, 243, 855-859.	4.8	23
42	Investigation on decolorization kinetics and thermodynamics of lignocellulosic xylooligosaccharides by highly selective adsorption with Amberlite XAD-16N. Food Chemistry, 2020, 310, 125934.	4.2	22
43	Co-preparation of pectin and cellulose from apple pomace by a sequential process. Journal of Food Science and Technology, 2019, 56, 4091-4100.	1.4	21
44	A One-Step Method for the Simultaneous Determination of Five Wood Monosaccharides and the Corresponding Aldonic Acids in Fermentation Broth Using High-Performance Anion-Exchange Chromatography Coupled with a Pulsed Amperometric Detector. Journal of Wood Chemistry and Technology, 2014, 34, 67-76.	0.9	20
45	Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover. Applied Biochemistry and Biotechnology, 2015, 176, 1370-1381.	1.4	20
46	Simultaneous Bioconversion of Xylose and Glycerol to Xylonic Acid and 1,3-Dihydroxyacetone from the Mixture of Pre-Hydrolysates and Ethanol-Fermented Waste Liquid by Gluconobacter oxydans. Applied Biochemistry and Biotechnology, 2016, 178, 1-8.	1.4	19
47	Electrodialytic bioproduction of xylonic acid in a bioreactor of supplied-oxygen intensification by using immobilized whole-cell Gluconobacter oxydans as biocatalyst. Bioresource Technology, 2019, 282, 378-383.	4.8	19
48	Improving the performance of cell biocatalysis and the productivity of acetoin from 2,3-butanediol using a compressed oxygen supply. Process Biochemistry, 2018, 64, 46-50.	1.8	18
49	Process for the successive production of calcium galactonate crystals by Gluconobacter oxydans. Bioresource Technology, 2018, 261, 458-460.	4.8	18
50	A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. Bioresource Technology, 2021, 333, 125157.	4.8	18
51	High solid loading enzymatic hydrolysis of acetic acid-peroxide/acetic acid pretreated poplar and cellulase recycling. Bioresource Technology, 2021, 340, 125624.	4.8	18
52	Draft Genome Sequence of Gluconobacter oxydans NL71, a Strain That Efficiently Biocatalyzes Xylose to Xylonic Acid at a High Concentration. Genome Announcements, 2015, 3, .	0.8	17
53	Hybrid films based on holistic celery nanocellulose and lignin/hemicellulose with enhanced mechanical properties and dye removal. International Journal of Biological Macromolecules, 2020, 147, 699-705.	3.6	17
54	Comparison of various organic acids for xylo-oligosaccharide productions in terms of pKa values and combined severity. Biotechnology for Biofuels, 2021, 14, 69.	6.2	17

#	Article	IF	CITATIONS
55	Improving the production yield and productivity of $1,3$ -dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Bioprocess and Biosystems Engineering, 2016, 39, 1315-1318.	1.7	16
56	Degradation Profiles of Non-lignin Constituents of Corn Stover from Dilute Sulfuric Acid Pretreatment. Journal of Wood Chemistry and Technology, 2016, 36, 192-204.	0.9	16
57	Effects of Inhibitors on the Transcriptional Profiling of Gluconobater oxydans NL71 Genes after Biooxidation of Xylose into Xylonate. Frontiers in Microbiology, 2017, 8, 716.	1.5	16
58	Preparation of highly flexible and sustainable lignin-rich nanocellulose film containing xylonic acid (XA), and its application as an antibacterial agent. International Journal of Biological Macromolecules, 2020, 163, 1565-1571.	3.6	16
59	Bioprocess Intensification for Whole-Cell Catalysis of Catabolized Chemicals with 2,4-Dinitrophenol Uncoupling. ACS Sustainable Chemistry and Engineering, 2020, 8, 15782-15790.	3.2	16
60	Efficient production of xylooligosaccharides and fermentable sugars from corncob by propionic acid and enzymatic hydrolysis. Bioresource Technology, 2021, 342, 125680.	4.8	16
61	Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis. Bioresource Technology, 2022, 354, 127190.	4.8	16
62	Improving techno-economics of bioproduct glycolic acid by successive recycled-cell catalysis of ethylene glycol with Gluconobacter oxydans. Bioprocess and Biosystems Engineering, 2018, 41, 1555-1559.	1.7	15
63	β-Factor Based Separation Characteristics of Bio-derived Chemicals Present in Lignocellulosic Hydrolysates Using Vacuum Distillation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2406-2413.	3.2	15
64	Valorization of apple pomace using a two-step slightly acidic processing strategy. Renewable Energy, 2020, 152, 793-798.	4.3	15
65	Combined acetic acid and enzymatic hydrolysis for xylooligosaccharides and monosaccharides production from poplar. Biomass and Bioenergy, 2022, 158, 106377.	2.9	15
66	Optimized production of xylooligosaccharides from poplar: A biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis. Bioresource Technology, 2022, 347, 126683.	4.8	14
67	Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water. Bioprocess and Biosystems Engineering, 2016, 39, 1619-1626.	1.7	13
68	Transcriptome and metabolome analysis of Pichia stipitis to three representative lignocellulosic inhibitors. Archives of Microbiology, 2019, 201, 581-589.	1.0	13
69	Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Bioresource Technology, 2019, 277, 221-224.	4.8	13
70	Optimization of selective acidolysis pretreatment for the valorization of wheat straw by a combined chemical and enzymatic process. Journal of Chemical Technology and Biotechnology, 2020, 95, 694-701.	1.6	13
71	The processing-module assembly strategy for continuous bio-oxidation of furan chemicals by integrated and coupled biotechnology. Green Chemistry, 2021, 23, 1330-1336.	4.6	13
72	Alkaline post-incubation improves the saccharification of poplar after hydrogen peroxide–acetic acid pretreatment. Biotechnology for Biofuels, 2021, 14, 151.	6.2	13

#	Article	IF	Citations
73	p-Toluenesulfonic acid combined with hydrogen peroxide-assisted pretreatment improves the production of fermentable sugars from walnut (Juglans regia L.) shells. Bioresource Technology, 2022, 355, 127300.	4.8	13
74	Comparison of Biological and Chemical Pretreatment on Coproduction of Pectin and Fermentable Sugars from Apple Pomace. Applied Biochemistry and Biotechnology, 2020, 190, 129-137.	1.4	12
75	Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14. Applied Biochemistry and Biotechnology, 2020, 192, 455-465.	1.4	12
76	Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans. Bioresource Technology, 2022, 348, 126811.	4.8	12
77	Selective Production of Xylooligosaccharides by Xylan Hydrolysis Using a Novel Recyclable and Separable Furoic Acid. Frontiers in Bioengineering and Biotechnology, 2021, 9, 660266.	2.0	11
78	Alkaline incubation improves the saccharification of poplar after sodium chlorite pretreatment with ultra-low cellulase loading. Renewable Energy, 2021, 170, 517-524.	4.3	11
79	Comparative analysis of various waste cooking oils for esterification and transesterification processes to produce biodiesel. Green Chemistry Letters and Reviews, 2021, 14, 462-473.	2.1	11
80	Purification of acidic lignocellulose hydrolysate using anion-exchange resin: Multicomponent adsorption, kinetic and thermodynamic study. Bioresource Technology, 2022, 351, 126979.	4.8	11
81	Catalytic valorization of hardwood for enhanced xylose-hydrolysate recovery and cellulose enzymatic efficiency via synergistic effect of Fe3+ and acetic acid. Biotechnology for Biofuels, 2019, 12, 248.	6.2	10
82	Enhancement of Gluconobacter oxydans Resistance to Lignocellulosic-Derived Inhibitors in Xylonic Acid Production by Overexpressing Thioredoxin. Applied Biochemistry and Biotechnology, 2020, 191, 1072-1083.	1.4	10
83	Directed regulation of whole-cell catalysis for high-quality galactonic acid bio-preparation and characterization by Ca2+. Fuel, 2021, 285, 119134.	3.4	10
84	Elucidation of oil-in-water emulsions stabilized with celery cellulose. Fuel, 2021, 291, 120210.	3.4	10
85	Revalorization of sunflower stalk pith as feedstock for the coproduction of pectin and glucose using a two-step dilute acid pretreatment process. Biotechnology for Biofuels, 2021, 14, 194.	6.2	10
86	Smart removal of monosaccharide contaminants in xylo-oligosaccharide slurry using sandwich-integration bioprocess of whole-cell catalysis combined with electrodialysis separation. Renewable Energy, 2021, 168, 1149-1156.	4.3	9
87	Cascade temperature-arising strategy for xylo-oligosaccharide production from lignocellulosic biomass with acetic acid catalyst recycling operation. Renewable Energy, 2021, 175, 625-637.	4. 3	9
88	Influence of oxygen transfer and uptake rates on xylonic acid production from xylose by Gluconobacter oxydans. Biochemical Engineering Journal, 2021, 176, 108192.	1,8	9
89	Nuclear magnetic resonance analysis of ascorbic acid assisted lignocellulose decomposition in dilute acid pretreatment and its stimulation on enzymatic hydrolysis. Bioresource Technology, 2022, 343, 126147.	4.8	9
90	Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor. Central South University, 2003, 10, 122-125.	0.5	8

#	Article	IF	Citations
91	A two-step bioprocessing strategy in pentonic acids production from lignocellulosic pre-hydrolysate. Bioprocess and Biosystems Engineering, 2017, 40, 1581-1587.	1.7	8
92	Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid. Biochemical and Biophysical Research Communications, 2018, 497, 7-12.	1.0	8
93	Enhancing Prehydrolysates Fermentability by Adding Nucleophilic Amino Acids and Proteins in Biomass Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 7892-7900.	3.2	8
94	Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment. Applied Biochemistry and Biotechnology, 2022, 194, 4946-4958.	1.4	8
95	Improvement of nutritional quality of soybean meal by Fe(II)-assisted acetic acid treatment. Food Chemistry, 2019, 283, 475-480.	4.2	7
96	Aliphatic extractive effects on acetic acid catalysis of typical agricultural residues to xylo-oligosaccharide and enzymatic hydrolyzability of cellulose. Biotechnology for Biofuels, 2021, 14, 97.	6.2	7
97	Effect of Dilute Acetic Acid Hydrolysis on Xylooligosaccharide Production and the Inhibitory Effect of Cellulolytic Enzyme Lignin from Poplar. ACS Sustainable Chemistry and Engineering, 2021, 9, 11361-11371.	3. 2	7
98	Characteristics and Kinetics of the Aldonic Acids Production using Whole-cell catalysis of Gluconobacter oxydans. BioResources, 2015, 10, .	0.5	6
99	Directing cell catalysis of glucose to 2-keto-d-gluconic acid using Gluconobacter oxydans NL71. Process Biochemistry, 2020, 94, 365-369.	1.8	6
100	A techno-practical method for overcoming the biotoxicity and volatility obstacles of butanol and butyric acid during whole-cell catalysis by Gluconobacter oxydans. Biotechnology for Biofuels, 2020, 13, 102.	6.2	6
101	Multifactorial effects of gluconic acid pretreatment of waste straws on enzymatic hydrolysis performance. Bioresource Technology, 2022, 346, 126617.	4.8	6
102	Detoxification of lignocellulosic prehydrolyzate by lignin nanoparticles prepared from biorefinery biowaste to improve the ethanol production. Bioprocess and Biosystems Engineering, 2022, 45, 1011-1018.	1.7	6
103	A Precise Method for Processing Data to Determine the Dissociation Constants of Polyhydroxy Carboxylic Acids via Potentiometric Titration. Applied Biochemistry and Biotechnology, 2017, 183, 1426-1438.	1.4	5
104	Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing. Journal of Food Processing and Preservation, 2018, 42, e13775.	0.9	5
105	In Situ Chemical Locking of Acetates During Xylo-Oligosaccharide Preparation by Lignocellulose Acidolysis. Applied Biochemistry and Biotechnology, 2021, 193, 2602-2615.	1.4	5
106	One-step sodium bisulfate hydrolysis for efficient production of xylooligosaccharides from poplar. Bioresource Technology, 2022, 355, 127269.	4.8	5
107	Dilute Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover into Fermentable Sugars. Advanced Materials Research, 2012, 535-537, 2462-2468.	0.3	4
108	Contribution of biogenic sources to secondary organic aerosol in the summertime in Shaanxi, China. Chemosphere, 2020, 254, 126815.	4.2	4

#	Article	IF	Citations
109	Comparison of pH-controlled lactic acid hydrolysis and xylanase hydrolysis for xylo-oligosaccharides production from delignified poplar. Industrial Crops and Products, 2022, 182, 114902.	2.5	4
110	Comparison of the effects of applying xylooligosaccharides alone or in combination with calcium acetate in broiler chickens. Animal Feed Science and Technology, 2022, 290, 115360.	1.1	4
111	Efficient and practical bioconversion strategy of xylose-rich corncob for prebiotic Bacillus subtilis production. Industrial Crops and Products, 2022, 186, 115274.	2.5	4
112	Pilot Scale Elimination of Phenolic Cellulase Inhibitors From Alkali Pretreated Wheat Straw for Improved Cellulolytic Digestibility to Fermentable Saccharides. Frontiers in Bioengineering and Biotechnology, 2021, 9, 658159.	2.0	3
113	Environmental bio-oxidation of toxic furan by the co-recycling of waste fermented broth and rest cells. Biochemical Engineering Journal, 2021, 176, 108193.	1.8	3
114	RSM-Modeling and Optimization of High Titer Functional Xylo-oligosaccharides Production by Edible Gluconic Acid Catalysis. Applied Biochemistry and Biotechnology, 2022, 194, 2919-2930.	1.4	3
115	Quantitative proteomic analysis of xylose fermentation strain Pichia stipitis CBS 5776 to lignocellulosic inhibitors acetic acid, vanillin, and 5-hydroxymethylfurfural. FEMS Microbiology Letters, 2018, 365, .	0.7	2
116	Green integration of alcohol-mediated hemicelluloses separation and alkali recycling (AHSAR) technologies in a viscose fiber plant. Separation and Purification Technology, 2020, 237, 116359.	3.9	2
117	First Report of Alternate Hosts of Willow Rust Disease Caused by <i>Melampsora ferrinii</i> in China. Plant Disease, 2022, 106, 324.	0.7	2
118	Xylooligosaccharides Production from Xylan Hydrolysis Using Recyclable Strong Acidic Cationic Exchange Resin as Solid Acid Catalyst. Applied Biochemistry and Biotechnology, 2022, 194, 3609-3620.	1.4	2
119	A Remixed-Fermentation Technique for the Simultaneous Bioconversion of Corncob C6 and C5 Sugars to Probiotic Bacillus subtilis. Applied Biochemistry and Biotechnology, 2021, 193, 2580-2590.	1.4	1
120	Reinforcing sorbitol bio-oxidative conversion with Gluconobacter oxydans whole-cell catalysis by acetate-assistance. Biochemical Engineering Journal, 2022, 179, 108328.	1.8	1
121	pH regulatory divergent point for the selective bio-oxidation of primary diols during resting cell catalysis. , 2022, 15 , .		1
122	Cover Image, Volume 95, Issue 3. Journal of Chemical Technology and Biotechnology, 2020, 95, i.	1.6	0