Christoph F Reinhart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/627422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Urban building energy modeling – A review of a nascent field. Building and Environment, 2016, 97, 196-202.	3.0	600
2	Dynamic Daylight Performance Metrics for Sustainable Building Design. LEUKOS - Journal of Illuminating Engineering Society of North America, 2006, 3, 7-31.	1.5	503
3	Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy and Buildings, 2001, 33, 683-697.	3.1	470
4	Adding advanced behavioural models in whole building energy simulation: A study on the total energy impact of manual and automated lighting control. Energy and Buildings, 2006, 38, 814-823.	3.1	238
5	A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and GIS data combined with hourly Daysim simulations. Solar Energy, 2013, 93, 127-143.	2.9	216
6	The simulation of annual daylight illuminance distributions — a state-of-the-art comparison of six RADIANCE-based methods. Energy and Buildings, 2000, 32, 167-187.	3.1	209
7	Modeling Boston: A workflow for the efficient generation and maintenance of urban building energy models from existing geospatial datasets. Energy, 2016, 117, 237-250.	4.5	190
8	Validation of a Bayesian-based method for defining residential archetypes in urban building energy models. Energy and Buildings, 2017, 134, 11-24.	3.1	166
9	Development and validation of a Radiance model for a translucent panel. Energy and Buildings, 2006, 38, 890-904.	3.1	155
10	Findings from a survey on the current use of daylight simulations in building design. Energy and Buildings, 2006, 38, 824-835.	3.1	148
11	From concept to application: A review of use cases in urban building energy modeling. Applied Energy, 2020, 279, 115738.	5.1	109
12	Experimental Validation of Autodesk® 3ds Max® Design 2009 and Daysim 3.0. LEUKOS - Journal of Illuminating Engineering Society of North America, 2009, 6, 7-35.	1.5	99
13	Comparison of four building archetype characterization methods in urban building energy modeling (UBEM): A residential case study in Kuwait City. Energy and Buildings, 2017, 154, 321-334.	3.1	87
14	Shoeboxer: An algorithm for abstracted rapid multi-zone urban building energy model generation and simulation. Energy and Buildings, 2017, 140, 140-153.	3.1	85
15	Dynamic annual daylight simulations based on one-hour and one-minute means of irradiance data. Solar Energy, 2002, 72, 385-395.	2.9	68
16	Evaluating assumptions of scales for subjective assessment of thermal environments – Do laypersons perceive them the way, we researchers believe?. Energy and Buildings, 2020, 211, 109761.	3.1	68
17	Development of a simulation-based decision support workflow for the implementation of Building-Integrated Agriculture (BIA) in urban contexts. Journal of Cleaner Production, 2017, 147, 589-602.	4.6	67
18	Putting rooftops to use – A Cost-Benefit Analysis of food production vs. energy generation under Mediterranean climates. Cities, 2018, 78, 166-179.	2.7	54

Christoph F Reinhart

#	Article	lF	CITATIONS
19	A methodology for auto-calibrating urban building energy models using surrogate modeling techniques. Journal of Building Performance Simulation, 2019, 12, 1-16.	1.0	51
20	Autozoner: an algorithm for automatic thermal zoning of buildings with unknown interior space definitions. Journal of Building Performance Simulation, 2016, 9, 176-189.	1.0	50
21	The Use of Multi-detail Building Archetypes in Urban Energy Modelling. Energy Procedia, 2017, 111, 817-825.	1.8	47
22	Current daylighting design practice: a survey. Building Research and Information, 2008, 36, 159-174.	2.0	46
23	Experimental validation of ray tracing as a means of image-based visual discomfort prediction. Building and Environment, 2017, 113, 131-150.	3.0	46
24	Predicting the Daylit Area—A Comparison of Students Assessments and Simulations at Eleven Schools of Architecture. LEUKOS - Journal of Illuminating Engineering Society of North America, 2014, 10, 193-206.	1.5	45
25	Simulation-based analysis of the use of PCM-wallboards to reduce cooling energy demand and peak-loads in low-rise residential heavyweight buildings in Kuwait. Building Simulation, 2017, 10, 481-495.	3.0	41
26	A Concept for Predicting Occupants' Long-Term Visual Comfort within Daylit Spaces. LEUKOS - Journal of Illuminating Engineering Society of North America, 2016, 12, 185-202.	1.5	40
27	A framework for using calibrated campus-wide building energy models for continuous planning and greenhouse gas emissions reduction tracking. Applied Energy, 2019, 241, 82-97.	5.1	32
28	Simulation-based daylighting analysis procedure for developing urban zoning rules. Building Research and Information, 2017, 45, 478-491.	2.0	30
29	A comparison of two modeling approaches for establishing and implementing energy use reduction targets for a university campus. Energy and Buildings, 2018, 173, 103-116.	3.1	27
30	UBEM.io: A web-based framework to rapidly generate urban building energy models for carbon reduction technology pathways. Sustainable Cities and Society, 2022, 77, 103534.	5.1	27
31	Daylighting—Light, form, and people. Energy and Buildings, 2006, 38, 715-717.	3.1	24
32	Learning by playing – teaching energy simulation as a game. Journal of Building Performance Simulation, 2012, 5, 359-368.	1.0	23
33	Development of view potential metrics and the financial impact of views on office rents. Landscape and Urban Planning, 2021, 215, 104193.	3.4	23
34	Analysis of a simplified calibration procedure for 18 design-phase building energy models. Journal of Building Performance Simulation, 2016, 9, 17-29.	1.0	22
35	Assessing Disability Glare Potential of Reflections from New Construction. Transportation Research Record, 2014, 2449, 114-122.	1.0	20
36	Life cycle building impact of a Middle Eastern residential neighborhood. Energy, 2017, 134, 336-348.	4.5	20

Christoph F Reinhart

#	Article	IF	CITATIONS
37	Balancing demand and supply: Linking neighborhood-level building load calculations with detailed district energy network analysis models. Energy, 2018, 150, 913-925.	4.5	20
38	Effects of real-time simulation feedback on design for visual comfort. Journal of Building Performance Simulation, 2019, 12, 343-361.	1.0	20
39	Opinion: Climate-based daylighting metrics in LEEDv4 – A fragile progress. Lighting Research and Technology, 2015, 47, 388-388.	1.2	19
40	The Scales Project, a cross-national dataset on the interpretation of thermal perception scales. Scientific Data, 2019, 6, 289.	2.4	19
41	Lightswitch-2002: a model for manual and automated control of electric lighting and blinds. Solar Energy, 2004, 77, 15-15.	2.9	16
42	Window View Quality: Why It Matters and What We Should Do. LEUKOS - Journal of Illuminating Engineering Society of North America, 2022, 18, 259-267.	1.5	14
43	Solar zoning and energy in detached dwellings. Environment and Planning B: Planning and Design, 2013, 40, 801-813.	1.7	12
44	Assessing future climate change and energy price scenarios: institutional building investment. Building Research and Information, 2013, 41, 209-222.	2.0	6
45	Photon mapping of geometrically complex glass structures: Methods and experimental evaluation. Building and Environment, 2020, 180, 106957.	3.0	4
46	"WHAT'S THE CARBON CONTENT OF YOUR FOOD?†DEVELOPMENT OF AN INTERACTIVE ONLINE FOOI	OPRINT	3

⁴⁶ SIMULATOR. , 2020, , .