## Dirk Volkmer

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6274053/publications.pdf

Version: 2024-02-01

149 papers 7,706 citations

44069 48 h-index 84 g-index

156 all docs

156 docs citations

156 times ranked 7867 citing authors

| #  | Article                                                                                                                                                                                                                                                                                | IF                | CITATIONS      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|
| 1  | Defibrillation of soft porous metal-organic frameworks with electric fields. Science, 2017, 358, 347-351.                                                                                                                                                                              | 12.6              | 352            |
| 2  | Properties of 3D-printed fiber-reinforced Portland cement paste. Cement and Concrete Composites, 2017, 79, 62-70.                                                                                                                                                                      | 10.7              | 310            |
| 3  | A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster. Advanced Materials, 2002, 14, 225-228.                                                                                                                                                                           | 21.0              | 244            |
| 4  | Toward Nanodevices: Synthesis and Characterization of the Nanoporous Surfactant-Encapsulated Keplerate (DODA)40(NH4)2[(H2O)nâŠ,Mo132O372(CH3COO)30(H2O)72]. Journal of the American Chemical Society, 2000, 122, 1995-1998.                                                            | 13.7              | 241            |
| 5  | Surfactant-Encapsulated Clusters (SECs): (DODA)20(NH4)[H3Mo57V6(NO)6O183(H2O)18], a Case Study. Chemistry - A European Journal, 2000, 6, 385-393.                                                                                                                                      | 3.3               | 237            |
| 6  | The 2019 surface acoustic waves roadmap. Journal Physics D: Applied Physics, 2019, 52, 353001.                                                                                                                                                                                         | 2.8               | 236            |
| 7  | The Structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters. Journal of the American Chemical Society, 2002, 124, 12279-12287.                                                                                                                                       | 13.7              | 231            |
| 8  | Elucidating Gating Effects for Hydrogen Sorption in MFUâ€4â€Type Triazolateâ€Based Metal–Organic Frameworks Featuring Different Pore Sizes. Chemistry - A European Journal, 2011, 17, 1837-1848.                                                                                       | 3.3               | 222            |
| 9  | Coordination Arrays: Tetranuclear Cobalt(II) Complexes with [2×2]-Grid Structure. Angewandte Chemie International Edition in English, 1997, 36, 1842-1844.                                                                                                                             | 4.4               | 200            |
| 10 | Heterogeneous Catalytic Oxidation by MFUâ€1: A Cobalt(II)â€Containing Metal–Organic Framework. Angewandte Chemie - International Edition, 2009, 48, 7546-7550.                                                                                                                         | 13.8              | 190            |
| 11 | Ultrathin Molybdenum Polyoxometalateâ^Polyelectrolyte Multilayer Films. Langmuir, 1998, 14, 3462-3465.                                                                                                                                                                                 | 3.5               | 162            |
| 12 | MFUâ€4 – A Metalâ€Organic Framework for Highly Effective H <sub>2</sub> /D <sub>2</sub> Separation. Advanced Materials, 2013, 25, 635-639.                                                                                                                                             | 21.0              | 150            |
| 13 | Polyoxometalate-Based Electro- and Photochromic Dual-Mode Devices. Langmuir, 2006, 22, 1949-1951.                                                                                                                                                                                      | 3 <b>.</b> 5      | 147            |
| 14 | Biologically inspired polyoxometalate–surfactant composite materials. Investigations on the structures of discrete, surfactant-encapsulated clusters, monolayers, and Langmuir–Blodgett films of (DODA)40(NH4)2[(H2O)n âŠ, Mo132O372(CH3CO2)30(H2O)72] â€. Dalton Transactions RSC, 20 | 2.3<br>000, , 398 | 145<br>9-3998. |
| 15 | Pyrazolateâ€Based Cobalt(II)â€Containing Metal–Organic Frameworks in Heterogeneous Catalytic<br>Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes.<br>Chemistry - A European Journal, 2011, 17, 8671-8695.                                | 3.3               | 138            |
| 16 | Dinuclear Nickel(II) Complexes as Models for the Active Site of Urease. Inorganic Chemistry, 1996, 35, 3792-3803.                                                                                                                                                                      | 4.0               | 131            |
| 17 | Intramolecular Antiferromagnetic Coupling in Supramolecular Grid Structures withCo2+Metal<br>Centers. Physical Review Letters, 1997, 78, 3390-3393.                                                                                                                                    | 7.8               | 131            |
| 18 | Ultrathin Composite Films Incorporating the Nanoporous Isopolyoxomolybdate "Keplerate― (NH4)42[Mo132O372(CH3COO)30(H2O)72]. Chemistry of Materials, 2000, 12, 2829-2831.                                                                                                               | 6.7               | 124            |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IF               | CITATIONS  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|
| 19 | Synthesis, structure, and properties of oligo-tridentate ligands; covalently assembled precursors of coordination arrays. Canadian Journal of Chemistry, 1997, 75, 169-182.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1              | 120        |
| 20 | Structure and Properties of the Dendron-Encapsulated Polyoxometalate (C52H60NO12)12[(Mn(H2O))3(SbW9O33)2], a First Generation Dendrizyme. Journal of the American Chemical Society, 2002, 124, 10489-10496.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.7             | 120        |
| 21 | A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Transactions, 2009, , 6487.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.3              | 120        |
| 22 | Scorpionateâ€Type Coordination in MFUâ€4 <i>l&lt; i&gt; Metal–Organic Frameworks: Smallâ€Molecule Binding and Activation upon the Thermally Activated Formation of Open Metal Sites. Angewandte Chemie - International Edition, 2014, 53, 5832-5836.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.8             | 120        |
| 23 | Reversible gas-phase redox processes catalyzed by Co-exchanged MFU-4l(arge). Chemical Communications, 2012, 48, 1236-1238.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.1              | 108        |
| 24 | Morphosynthesis of Nacre-Type Laminated CaCO3 Thin Films and Coatings. Angewandte Chemie - International Edition, 2005, 44, 639-644.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.8             | 102        |
| 25 | Portland cement paste with aligned carbon fibers exhibiting exceptionally high flexural strength (>) Tj ETQq1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.784314<br>11.0 | rgBT /Over |
| 26 | Capture of heavy hydrogen isotopes in a metal-organic framework with active Cu(I) sites. Nature Communications, 2017, 8, 14496.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8             | 98         |
| 27 | Polymer Brushes as Ionotropic Matrices for the Directed Fabrication of Microstructured Calcite Thin Films. Angewandte Chemie - International Edition, 2006, 45, 7458-7461.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.8             | 97         |
| 28 | Dielectric Relaxation Processes, Electronic Structure, and Band Gap Engineering of MFUâ€4â€type<br>Metalâ€Organic Frameworks: Towards a Rational Design of Semiconducting Microporous Materials.<br>Advanced Functional Materials, 2014, 24, 3885-3896.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.9             | 95         |
| 29 | Metal–organic frameworks in Germany: From synthesis to function. Coordination Chemistry Reviews, 2019, 380, 378-418.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.8             | 91         |
| 30 | Interfacial electrostatics guiding the crystallization of CaCO3 underneath monolayers of calixarenes and resorcarenesElectronic supplementary information (ESI) available: representative optical and scanning electron micrographs of CaCO3 crystals grown underneath a monolayer of 1 at low surface pressure; additional crystallographic data including numbering schemes, tables and control of the con | 6.7              | 89         |
| 31 | details. See http://www.rsc.org/suppdata/jm/b4/b403132f/. Journal of Materials Chemistry, 2004, 14, 2249. Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate. Macromolecules, 2007, 40, 168-177.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.8              | 81         |
| 32 | Carbon fibre reinforced cement-based composites as smart floor heating materials. Composites Part B: Engineering, 2016, 90, 465-470.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.0             | 80         |
| 33 | Functional Polyoxometalate Thin Films via Electrostatic Layer-by-Layer Self-Assembly. Journal of Cluster Science, 2003, 14, 405-419.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3              | 75         |
| 34 | Noble gases and microporous frameworks; from interaction to application. Microporous and Mesoporous Materials, 2012, 162, 64-68.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4              | 74         |
| 35 | Formation of Single-Crystalline Aragonite Tablets/Films via an Amorphous Precursor. Langmuir, 2007, 23, 1988-1994.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5              | 70         |
| 36 | Postsynthetic Metal and Ligand Exchange in MFUâ€4 <i>I</i> : A Screening Approach toward Functional Metal–Organic Frameworks Comprising Singleâ€6ite Active Centers. Chemistry - A European Journal, 2015, 21, 8188-8199.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3              | 70         |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                       | IF                   | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|
| 37 | Magnetism of self-assembled mono- and tetranuclear supramolecularNi2+complexes. Physical Review B, 1998, 58, 3277-3285.                                                                                                                                                                                                                                                       | 3.2                  | 69           |
| 38 | New V <sup>IV</sup> -Based Metal–Organic Framework Having Framework Flexibility and High CO <sub>2</sub> Adsorption Capacity. Inorganic Chemistry, 2013, 52, 113-120.                                                                                                                                                                                                         | 4.0                  | 68           |
| 39 | Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Physical Chemistry Chemical Physics, 2013, 15, 3552.                                                                                                                                                                                              | 2.8                  | 63           |
| 40 | [Ni2(ppepO)(C6H5COO)2(CH3COOH)]ClO4·C4H10O: Synthesis and Characterization of an Asymmetric Dinuclear Nickel(II) Complex Showing Unusual Coordination Behavior with Relevance to the Active Site of Urease. Inorganic Chemistry, 1996, 35, 1132-1135.                                                                                                                         | 4.0                  | 61           |
| 41 | Smart Polyoxometalate-Based Nitrogen Monoxide Sensors. Analytical Chemistry, 2004, 76, 4579-4582.                                                                                                                                                                                                                                                                             | 6.5                  | 60           |
| 42 | A self-assembling metallosupramolecular cage based on cavitand–terpyridine subunits. Tetrahedron Letters, 2008, 49, 5939-5942.                                                                                                                                                                                                                                                | 1.4                  | 60           |
| 43 | Nanosized Ball Joints Constructed from C <sub>60</sub> and Tribenzotriquinacene Sockets: Synthesis, Component Selfâ€Assembly and Structural Investigations. Chemistry - A European Journal, 2007, 13, 9931-9938.                                                                                                                                                              | 3.3                  | 59           |
| 44 | From Micro to Nano: A Toolbox for Tuning Crystal Size and Morphology of Benzotriazolate-Based Metal–Organic Frameworks. Crystal Growth and Design, 2016, 16, 3190-3197.                                                                                                                                                                                                       | 3.0                  | 58           |
| 45 | Acidic peptides acting as growth modifiers of calcite crystalsElectronic Supplementary Information (ESI) available: full analytical characterization of 1 and 2 as well as experimental details on CaCO3 crystal growth and crystallographic analysis of the calcite crystal morphology. See http://www.rsc.org/suppdata/cc/b4/b405613b/. Chemical Communications. 2004 1872. | 4.1                  | 56           |
| 46 | CFA-1: the first chiral metal–organic framework containing Kuratowski-type secondary building units. Dalton Transactions, 2013, 42, 10786.                                                                                                                                                                                                                                    | 3.3                  | 55           |
| 47 | Vaterite Polymorph Switching Controlled by Surface Charge Density of an Amphiphilic Dendron-calix[4]arene. Crystal Growth and Design, 2006, 6, 1120-1123.                                                                                                                                                                                                                     | 3.0                  | 54           |
| 48 | Fast Surface Acoustic Wave-Based Sensors to Investigate the Kinetics of Gas Uptake in Ultra-Microporous Frameworks. ACS Sensors, 2017, 2, 740-747.                                                                                                                                                                                                                            | 7.8                  | 54           |
| 49 | Vanadium Analogues of Nonfunctionalized and Aminoâ€Functionalized MOFs with MILâ€101 Topology – Synthesis, Characterization, and Gas Sorption Properties. European Journal of Inorganic Chemistry, 2012, 2481-2486.                                                                                                                                                           | 2.0                  | 48           |
| 50 | Synthesis, Structural Characterization, and Catalytic Performance of a Vanadium-Based Metal-Organic Framework (COMOC-3). European Journal of Inorganic Chemistry, 2012, 2012, 2819-2827.                                                                                                                                                                                      | 2.0                  | 47           |
| 51 | Achieving Large Volumetric Gas Storage Capacity in Metal–Organic Frameworks by Kinetic Trapping: A Case Study of Xenon Loading in MFU-4. Journal of the American Chemical Society, 2018, 140, 10191-10197.                                                                                                                                                                    | 13.7                 | 46           |
| 52 | Syntheses and Magnetostructural Investigations on Kuratowski-Type Homo- and Heteropentanuclear Coordination Compounds [MZn <sub>4</sub> Cl <sub>4</sub> (L) <sub>6</sub> ] (M <sup>II</sup> = Zn, Fe,) Tj I                                                                                                                                                                   | TQ <sub>4.8</sub> 00 | rgBT/Overloc |
| 53 | Nonplanar <i>K</i> <sub>3,3</sub> Graph. Inorganic Chemistry, 2010, 49, 7424-7434.  Crystallization of (012) oriented calcite single crystals underneath monolayers of tetra(carboxymethoxy)calix[4]arenes. Dalton Transactions RSC, 2002, , 4547.                                                                                                                            | 2.3                  | 42           |
| 54 | Synthesis and Characterization of Homo- and Heterodinuclear Complexes Containing the N3M( $\hat{1}\frac{1}{4}$ 2-SR)3MN3Core (M = Fe, Co, Ni). Inorganic Chemistry, 1999, 38, 3871-3882.                                                                                                                                                                                      | 4.0                  | 41           |

| #  | Article                                                                                                                                                                                                                                                    | IF               | Citations                  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------|
| 55 | Oriented crystallization of calcite single crystals grown underneath monolayers of tetracarboxyresorc[4]arenes. CrystEngComm, 2002, 4, 288-295.                                                                                                            | 2.6              | 40                         |
| 56 | Anisotropic Water-Mediated Proton Conductivity in Large Iron(II) Metal–Organic Framework Single Crystals for Proton-Exchange Membrane Fuel Cells. ACS Applied Nano Materials, 2019, 2, 291-298.                                                            | 5.0              | 39                         |
| 57 | Morphosynthesis of Star-Shaped Titania–Silica Shells. Angewandte Chemie - International Edition, 2003, 42, 58-61.                                                                                                                                          | 13.8             | 36                         |
| 58 | Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous and Mesoporous Materials, 2013, 181, 175-181.                                                                                                              | 4.4              | 36                         |
| 59 | Homo―and Heteropentanuclear Coordination Compounds with <i>T</i> <sub>d</sub> Symmetry – the Solid State Structures of [MZn <sub>4</sub> (L) <sub>4</sub> (L′) <sub>6</sub> ] (M = Co <sup>II</sup> or) Tj Chemie, 2008, 634, 2532-2538.                   | E <u>TQ</u> q1 1 | 0.784314 <mark>rg</mark> f |
| 60 | CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(i)/Ag(i) secondary building units and 3,3′,5,5′-tetraphenyl-bipyrazolate ligands. Dalton Transactions, 2013, 42, 6909.                      | 3.3              | 32                         |
| 61 | Metal-Organic Frameworks (MOFs) Composed of (Triptycenedicarboxylato)zinc. European Journal of Inorganic Chemistry, 2008, 2008, 2601-2609.                                                                                                                 | 2.0              | 31                         |
| 62 | High Volumetric Hydrogen Storage Capacity using Interpenetrated Metal–Organic Frameworks. Energy Technology, 2018, 6, 510-512.                                                                                                                             | 3.8              | 31                         |
| 63 | Elucidating the role of charge density on the growth of CaCO3 crystals underneath Calix[4]arene monolayers. Materials Science and Engineering C, 2005, 25, 161-167.                                                                                        | 7.3              | 30                         |
| 64 | Tribenzotriquinacene Receptors for C <sub>60</sub> â€Fullerene Rotors: Towards <i>C</i> <sub>3</sub> Symmetrical Chiral Stators for Unidirectionally Operating Nanoratchets. Chemistry - A European Journal, 2014, 20, 9100-9110.                          | 3.3              | 30                         |
| 65 | Metal–organic framework nanoparticles for arsenic trioxide drug delivery. Journal of Materials<br>Chemistry B, 2018, 6, 6481-6489.                                                                                                                         | 5.8              | 30                         |
| 66 | Zeolitic Imidazolate Frameworkâ€8 as pHâ€6ensitive Nanocarrier for "Arsenic Trioxide―Drug Delivery.<br>Chemistry - A European Journal, 2019, 25, 13189-13196.                                                                                              | 3.3              | 30                         |
| 67 | Comparative solvolytic stabilities of copper(II) nanoballs and dinuclear Cu(II) paddle wheel units. Inorganica Chimica Acta, 2010, 363, 4220-4229.                                                                                                         | 2.4              | 29                         |
| 68 | Photophysical properties of Kuratowski-type coordination compounds [MIIZn4Cl4(Me2bta)6] (MII = Zn) Tj ETQq0                                                                                                                                                | )                | ·/Qyerlock 10              |
| 69 | Organometallic MFU-4 <i>l</i> )(arge) Metal–Organic Frameworks. Organometallics, 2019, 38, 3444-3452.                                                                                                                                                      | 2.3              | 27                         |
| 70 | Hierarchical <scp>dl</scp> -Glutamic Acid Microspheres from Polymer-Induced Liquid Precursors. Crystal Growth and Design, 2011, 11, 3243-3249.                                                                                                             | 3.0              | 26                         |
| 71 | A structurally flexible triazolate-based metal–organic framework featuring coordinatively unsaturated copper( <scp>i</scp> ) sites. Dalton Transactions, 2016, 45, 13853-13862.                                                                            | 3.3              | 26                         |
| 72 | A Zr-Based Metal–Organic Framework with a DUT-52 Structure Containing a Trifluoroacetamido-Functionalized Linker for Aqueous Phase Fluorescence Sensing of the Cyanide Ion and Aerobic Oxidation of Cyclohexane. Inorganic Chemistry, 2021, 60, 4539-4550. | 4.0              | 26                         |

| #  | Article                                                                                                                                                                                                                                                          | IF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Conventional and microwave assisted hydrothermal syntheses of 11 $\tilde{A}$ tobermorite. Journal of Materials Chemistry A, 2013, 1, 10318.                                                                                                                      | 10.3 | 25        |
| 74 | Nonanuclear Coordination Compounds Featuring {M <sub>9</sub> L <sub>12</sub> } <sup>6+</sup> Cores (M = Ni <sup>II</sup> , Co <sup>II</sup> , or Zn <sup>II</sup> ; L = 1,2,3â€Benzotriazolate). European Journal of Inorganic Chemistry, 2009, 2009, 3094-3101. | 2.0  | 24        |
| 75 | Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing. Journal of Chemical Physics, 2019, 150, 024504.                                                                                   | 3.0  | 24        |
| 76 | Molecular Dynamics Simulations of Dendrimer-Encapsulated α-Keggin Ions in Trichloromethane Solution. Journal of Physical Chemistry B, 2008, 112, 5153-5162.                                                                                                      | 2.6  | 23        |
| 77 | Cooperative Large-Hysteresis Spin-Crossover Transition in the Iron(II) Triazolate [Fe(ta) <sub>2</sub> ]<br>Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 10501-10511.                                                                                 | 4.0  | 23        |
| 78 | Unveiling the mechanism of selective gate-driven diffusion of CO2 over N2 in MFU-4 metal–organic framework. Dalton Transactions, 2014, 43, 9612-9619.                                                                                                            | 3.3  | 22        |
| 79 | CuN6 Jahn–Teller centers in coordination frameworks comprising fully condensed Kuratowski-type secondary building units: phase transitions and magneto-structural correlations. Dalton Transactions, 2012, 41, 4239.                                             | 3.3  | 21        |
| 80 | The existence region and composition of a polymer-induced liquid precursor phase for dl-glutamic acid crystals. Physical Chemistry Chemical Physics, 2012, 14, 914-919.                                                                                          | 2.8  | 21        |
| 81 | Almost Enclosed Buckyball Joints: Synthesis, Complex Formation, and Computational Simulations of Pentypticeneâ€Extended Tribenzotriquinacene. ChemPhysChem, 2014, 15, 3855-3863.                                                                                 | 2.1  | 21        |
| 82 | Elucidating Lewis acidity of metal sites in MFU-4l metal-organic frameworks: N2O and CO2 adsorption in MFU-4l, Cul-MFU-4l and Li-MFU-4l. Microporous and Mesoporous Materials, 2015, 216, 146-150.                                                               | 4.4  | 21        |
| 83 | Preparation of Hierarchical Mesocrystalline DL‣ysine·HCl–Poly(acrylic acid) Hybrid Thin Films.<br>Advanced Materials, 2011, 23, 3548-3552.                                                                                                                       | 21.0 | 20        |
| 84 | Microdomain Transformations in Mosaic Mesocrystal Thin Films. Advanced Functional Materials, 2013, 23, 1547-1555.                                                                                                                                                | 14.9 | 19        |
| 85 | <b>CFA-7</b> : an interpenetrated metal–organic framework of the MFU-4 family. Dalton Transactions, 2015, 44, 13060-13070.                                                                                                                                       | 3.3  | 19        |
| 86 | Formation of a quasi-solid structure by intercalated noble gas atoms in pores of Cu <sup>I</sup> -MFU-4l metal–organic framework. Chemical Communications, 2015, 51, 714-717.                                                                                    | 4.1  | 18        |
| 87 | Single-Crystal to Single-Crystal Transformation of a Nonporous Fe(II) Metal–Organic Framework into a Porous Metal–Organic Framework via a Solid-State Reaction. Inorganic Chemistry, 2017, 56, 12337-12347.                                                      | 4.0  | 18        |
| 88 | [Cu4OCl6(DABCO)2]·0.5DABCO·4CH3OH ("MFU-5â€): Modular synthesis of a zeolite-like metal-organic framework constructed from tetrahedral {Cu4OCl6} secondary building units and linear organic linkers. Journal of Solid State Chemistry, 2010, 183, 208-217.      | 2.9  | 17        |
| 89 | Production of CaCO3/hyperbranched polyglycidol hybrid films using spray-coating technique. Journal of Colloid and Interface Science, 2012, 374, 61-69.                                                                                                           | 9.4  | 17        |
| 90 | Gas sorption and transition-metal cation separation with a thienothiophene based zirconium metal–organic framework. Journal of Solid State Chemistry, 2015, 232, 221-227.                                                                                        | 2.9  | 17        |

| #   | Article                                                                                                                                                                                                                             | IF    | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 91  | CFA-4 $\hat{a}$ $\in$ a fluorinated metal $\hat{a}$ $\in$ organic framework with exchangeable interchannel cations. Dalton Transactions, 2017, 46, 6745-6755.                                                                       | 3.3   | 17        |
| 92  | Indications for Lifshitz transitions in the nodal-line semimetal ZrSiTe induced by interlayer interaction. Physical Review B, 2020, 101, .                                                                                          | 3.2   | 17        |
| 93  | Thermal spin-crossover in the [M3Zn6Cl6L12] (M = Zn, Fell; L = 5,6-dimethoxy-1,2,3-benzotriazolate) system: structural, electrochemical, MÅ $\P$ ssbauer, and UV-Vis spectroscopic studies. Dalton Transactions, 2010, 39, 9851.    | 3.3   | 16        |
| 94  | A Metallosupramolecular Octahedron Assembled from Twelve Copper(I) Metal Ions and Six 4,4′â€(1,2â€Phenylene)bis(3,5â€dimethylpyrazolâ€1â€ide) Ligands. Zeitschrift Fur Anorganische Und Allgeme Chemie, 2013, 639, 1461-1471.       | in1e2 | 16        |
| 95  | Metal-organic frameworks as host materials of confined supercooled liquids. Journal of Chemical Physics, 2015, 143, 154505.                                                                                                         | 3.0   | 14        |
| 96  | [Co <sub>5</sub> Tp* <sub>4</sub> (Me <sub>2</sub> bta) <sub>6</sub> ]: A Highly Symmetrical Pentanuclear Kuratowski Complex Featuring Tris(pyrazolyl)borate and Benzotriazolate Ligands. Inorganic Chemistry, 2016, 55, 1053-1060. | 4.0   | 14        |
| 97  | Cyclic gas-phase heterogeneous process in a metal–organic framework involving a nickel nitrosyl complex. Faraday Discussions, 2017, 201, 101-112.                                                                                   | 3.2   | 14        |
| 98  | Catalysis in MOFs: general discussion. Faraday Discussions, 2017, 201, 369-394.                                                                                                                                                     | 3.2   | 14        |
| 99  | Computational screening study towards redox-active metal-organic frameworks. New Journal of Physics, 2013, 15, 115004.                                                                                                              | 2.9   | 13        |
| 100 | Zr(IV) and Ce(IV)-based metal-organic frameworks incorporating 4-carboxycinnamic acid as ligand: Synthesis and properties. Microporous and Mesoporous Materials, 2017, 237, 275-281.                                                | 4.4   | 13        |
| 101 | Novel characterization of the adsorption sites in large pore metal–organic frameworks: combination of X-ray powder diffraction and thermal desorption spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 12892.           | 2.8   | 12        |
| 102 | Dynamic Studies on Kinetic H <sub>2</sub> /D <sub>2</sub> Quantum Sieving in a Narrow Pore Metal–Organic Framework Grown on a Sensor Chip. Chemistry - A European Journal, 2019, 25, 10803-10807.                                   | 3.3   | 12        |
| 103 | Influence of fiber alignment on pseudoductility and microcracking in a cementitious carbon fiber composite material. Materials and Structures/Materiaux Et Constructions, 2021, 54, 1.                                              | 3.1   | 12        |
| 104 | Synthesis of terpyridine-substituted calix[n] arenes. Tetrahedron Letters, 2009, 50, 1303-1306.                                                                                                                                     | 1.4   | 11        |
| 105 | Supercooled water confined in a metal-organic framework. Communications Physics, 2020, 3, .                                                                                                                                         | 5.3   | 11        |
| 106 | An Anthraceneâ€Based Metalâ€Organic Framework for Selective Photoâ€Reduction of Carbon Dioxide to Formic Acid Coupled with Water Oxidation. Chemistry - A European Journal, 2021, 27, 4098-4107.                                    | 3.3   | 11        |
| 107 | Nanometer-Sized Molybdenum–Iron Oxide Capsule-Surface Modifications: External and Internal.<br>Small, 2007, 3, 986-992.                                                                                                             | 10.0  | 10        |
| 108 | Mixed SAMs of backbone-functionalized tribenzotriquinacenes and alkanethiols: Synthesis, preparation and STM-investigations. Applied Surface Science, 2015, 356, 645-650.                                                           | 6.1   | 10        |

| #   | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Magnetodielectric coupling in a non-perovskite metal–organic framework. Materials Horizons, 2017, 4, 1178-1184.                                                                                                          | 12.2 | 10        |
| 110 | CFA-13 – a bifunctional perfluorinated metal–organic framework featuring active Cu( <scp>i</scp> ) and Cu( <scp>ii</scp> ) sites. Dalton Transactions, 2017, 46, 14907-14915.                                            | 3.3  | 10        |
| 111 | CFA-15 – a perfluorinated metal–organic framework with linear 1-D Cu <sup>II</sup> -chains containing accessible unsaturated, reactive metal centres. Dalton Transactions, 2019, 48, 15236-15246.                        | 3.3  | 10        |
| 112 | Coordination arrays $\hat{A}$ — Synthesis and characterization of tetranuclear complexes of grid-type. Canadian Journal of Chemistry, 2004, 82, 1428-1434.                                                               | 1.1  | 9         |
| 113 | Dynamics and Equilibrium of the Penetration of Soluble Cetyltrimethylammonium Bromide into Langmuir Monolayers of Arachidic Acid under Different pH Conditions. Journal of Physical Chemistry B, 2004, 108, 16163-16167. | 2.6  | 9         |
| 114 | Carbon supported Ru clusters prepared by pyrolysis of Ru precursor-impregnated biopolymer fibers. Journal of Materials Chemistry A, 2015, 3, 20919-20926.                                                                | 10.3 | 9         |
| 115 | Flexible chiral pyrazolate-based metal–organic framework containing saddle-type<br>Cu <sup>I</sup> <sub>4</sub> (pyrazolate) <sub>4</sub> units. CrystEngComm, 2016, 18, 7883-7893.                                      | 2.6  | 9         |
| 116 | One-pot synthesis of ultrastable pentanuclear alkylzinc complexes. Dalton Transactions, 2017, 46, 2618-2625.                                                                                                             | 3.3  | 9         |
| 117 | Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process. Beilstein Journal of Nanotechnology, 2017, 8, 1145-1155.                                 | 2.8  | 9         |
| 118 | Synthesis and characterization of a flexible metal organic framework generated from Mn <sup>III</sup> and the 4,4′-bipyrazolate-ligand. Dalton Transactions, 2018, 47, 8779-8786.                                        | 3.3  | 9         |
| 119 | Usage of polymer brushes as substrates of bone cells. Frontiers of Materials Science in China, 2009, 3, 132-144.                                                                                                         | 0.5  | 8         |
| 120 | Plasma-Enhanced Chemical Vapor Deposition of $\langle i \rangle n \langle i \rangle$ -Heptane and Methyl Methacrylate for Potential Cell Alignment Applications. ACS Applied Materials & Enterfaces, 2012, 4, 5196-5203. | 8.0  | 8         |
| 121 | Isolated and Linear Arrays of Surfactant-Encapsulated Polyoxometalate Clusters on Graphite.<br>Langmuir, 2008, 24, 2767-2771.                                                                                            | 3.5  | 7         |
| 122 | Selective Adsorption of Functionalized Nanoparticles to Patterned Polymer Brush Surfaces and Its Probing with an Optical Trap. ChemPhysChem, 2013, 14, 3523-3531.                                                        | 2.1  | 7         |
| 123 | <br>b>Fe/Ga-CFA-6 â€" metal organic frameworks featuring trivalent metal centers and the 4,4′-bipyrazolyl ligand. CrystEngComm, 2015, 17, 313-322.                                                                       | 2.6  | 7         |
| 124 | Influence of surface-modification, length and volume fraction of carbon short fibers on the mechanical properties of calcium aluminate cement systems. Materials Today Communications, 2020, 25, 101704.                 | 1.9  | 7         |
| 125 | CFA-18: a homochiral metal–organic framework (MOF) constructed from rigid enantiopure bistriazolate linker molecules. Dalton Transactions, 2020, 49, 15758-15768.                                                        | 3.3  | 7         |
| 126 | New directions in gas sorption and separation with MOFs: general discussion. Faraday Discussions, 2017, 201, 175-194.                                                                                                    | 3.2  | 6         |

| #   | Article                                                                                                                                                                                                                               | IF  | Citations |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | From molecular modules to modular materials. Pure and Applied Chemistry, 2004, 76, 1847-1867.                                                                                                                                         | 1.9 | 6         |
| 128 | Coatings from micropatterned sulfobetaine polymer brushes as substrates for MC3T3-E1 cells. Journal of Materials Science: Materials in Medicine, 2012, 23, 573-579.                                                                   | 3.6 | 5         |
| 129 | Bistriazole-p-benzoquinone and its alkali salts: electrochemical behaviour in aqueous alkaline solutions. Dalton Transactions, 2017, 46, 12537-12543.                                                                                 | 3.3 | 5         |
| 130 | CFA-14 – a perfluorinated metal–organic framework with linear 1-D Co <sup>II</sup> -chains showing temperature dependent spin-chain magnetic ordering. Dalton Transactions, 2018, 47, 12750-12758.                                    | 3.3 | 5         |
| 131 | Long-term entrapment and temperature-controlled-release of SF <sub>6</sub> gas in metal–organic frameworks (MOFs). Beilstein Journal of Nanotechnology, 2019, 10, 1851-1859.                                                          | 2.8 | 5         |
| 132 | Evaluation of the Behavior of Carbon Short Fiber Reinforced Concrete (CSFRC) Based on a Multi-Sensory Experimental Investigation and a Numerical Multiscale Approach. Materials, 2021, 14, 7005.                                      | 2.9 | 5         |
| 133 | MOFs modeling and theory: general discussion. Faraday Discussions, 2017, 201, 233-245.                                                                                                                                                | 3.2 | 4         |
| 134 | Synthesis, Thermal Stability, and Magnetic Properties of a Manganese(II) Coordination Framework Containing Bistriazolate Ligands. European Journal of Inorganic Chemistry, 2019, 2019, 4471-4476.                                     | 2.0 | 4         |
| 135 | Interfacial Instability as Shaping Mechanism for Polystyrene Particles with Tunable Surface Texture.<br>Advanced Materials Interfaces, 2021, 8, 2100628.                                                                              | 3.7 | 4         |
| 136 | 3D printing as an automated manufacturing method for a carbon fiber-reinforced cementitious composite with outstanding flexural strength ( $105 \text{\^AN/mm2}$ ). Materials and Structures/Materiaux Et Constructions, 2021, 54, 1. | 3.1 | 4         |
| 137 | Assembly of Porous Metal Hydrogen-Bonded Organic Frameworks from Diamine-Functionalized Kuratowski Complexes. Crystal Growth and Design, 2022, 22, 379-391.                                                                           | 3.0 | 4         |
| 138 | 3D characterization of microstructured poly(methacrylic acid) thin films via Mach–Zehnder interference microscopy. Thin Solid Films, 2011, 519, 8100-8108.                                                                            | 1.8 | 3         |
| 139 | Two 3D Coordination Frameworks Based on Benzobisimidazole Linkers Generated under Similar Conditions: Synthesis, Structures and Thermal Properties. European Journal of Inorganic Chemistry, 2014, 2014, 5362-5369.                   | 2.0 | 3         |
| 140 | Zinc(II) Coordination Frameworks Based on Benzobisimidazole: The Role of the Methyl Substituent. European Journal of Inorganic Chemistry, 2017, 2017, 5395-5402.                                                                      | 2.0 | 3         |
| 141 | Viscoelasticity and energy dissipation as indicators of flexural fatigue behavior in a ductile carbon fiber-reinforced cementitious composite. International Journal of Fatigue, 2022, 160, 106839.                                   | 5.7 | 3         |
| 142 | Selfâ€Assembly of Amphiphilic Hexapyridinium Cations at the Air/Water Interface and on HOPG Surfaces. ChemPhysChem, 2007, 8, 2354-2362.                                                                                               | 2.1 | 2         |
| 143 | Acenaphtho[1,2â€d][1,2,3]triazole and Its Kuratowski Complex. A Ï€â€Extended Tecton for Supramolecular and Coordinative Selfâ€assembly. Chemistry - A European Journal, 2021, , .                                                     | 3.3 | 2         |
| 144 | Synthesis, Thermal Stability and Magnetic Properties of an Interpenetrated Mn(II) Triazolate Coordination Framework. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .                                                       | 1.2 | 2         |

| #   | Article                                                                                                                                                                                        | IF         | CITATIONS   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 145 | Thin Films: Microdomain Transformations in Mosaic Mesocrystal Thin Films (Adv. Funct. Mater.) Tj ETQq1 1 0.7843                                                                                | 314.rgBT / | Qverlock 10 |
| 146 | Single crystals of Metal-Organic Framework Ulm-4 grown selectively on a micro-structured plasma polymer coating. Thin Solid Films, 2019, 684, 36-41.                                           | 1.8        | 1           |
| 147 | Combining Theory and Experiments To Study the Influence of Gas Sorption on the Conductivity Properties of Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2022, 14, 33662-33674. | 8.0        | 1           |
| 148 | Interfacial Instability as Shaping Mechanism for Polystyrene Particles with Tunable Surface Texture (Adv. Mater. Interfaces 16/2021). Advanced Materials Interfaces, 2021, 8, 2170087.         | 3.7        | 0           |
| 149 | Influencing the Dimensionality of Ni/Coâ€Bipyrazole based Coordination Frameworks through Anions and thermal Activation. European Journal of Inorganic Chemistry, 0, , .                       | 2.0        | O           |