## Andrew C Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/627389/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                  | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Asymmetrical Î <sup>2</sup> -actin mRNA translation in growth cones mediates attractive turning to netrin-1. Nature<br>Neuroscience, 2006, 9, 1247-1256.                                                 | 14.8 | 443       |
| 2  | Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.<br>Nature Neuroscience, 2014, 17, 559-568.                                                                   | 14.8 | 268       |
| 3  | Local translation and directional steering in axons. EMBO Journal, 2007, 26, 3729-3736.                                                                                                                  | 7.8  | 169       |
| 4  | A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Molecular and Cellular Neurosciences, 2009, 40, 128-142.                              | 2.2  | 148       |
| 5  | Sexually Dimorphic Octopaminergic Neurons Modulate Female Postmating Behaviors in Drosophila.<br>Current Biology, 2014, 24, 725-730.                                                                     | 3.9  | 135       |
| 6  | Function and regulation of local axonal translation. Current Opinion in Neurobiology, 2008, 18, 60-68.                                                                                                   | 4.2  | 131       |
| 7  | Odor Discrimination in Drosophila: From Neural Population Codes to Behavior. Neuron, 2013, 79, 932-944.                                                                                                  | 8.1  | 118       |
| 8  | Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila. Neuron, 2013,<br>79, 945-956.                                                                                      | 8.1  | 104       |
| 9  | Neural circuitry coordinating male copulation. ELife, 2016, 5, .                                                                                                                                         | 6.0  | 50        |
| 10 | Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are<br>involved in Xenopus retinal axon development. Neural Development, 2009, 4, 8.                       | 2.4  | 47        |
| 11 | Neuronal mechanisms underlying innate and learned olfactory processing in Drosophila. Current<br>Opinion in Insect Science, 2019, 36, 9-17.                                                              | 4.4  | 41        |
| 12 | Inhibitory muscarinic acetylcholine receptors enhance aversive olfactory learning in adult<br>Drosophila. ELife, 2019, 8, .                                                                              | 6.0  | 36        |
| 13 | Diffraction Pattern Analysis of Bright TRACE Flares. Solar Physics, 2001, 198, 385-398.                                                                                                                  | 2.5  | 32        |
| 14 | Localized inhibition in the Drosophila mushroom body. ELife, 2020, 9, .                                                                                                                                  | 6.0  | 29        |
| 15 | Exploiting Multiple Timescales in Hierarchical Echo State Networks. Frontiers in Applied Mathematics and Statistics, 2021, 6, .                                                                          | 1.3  | 19        |
| 16 | Mechanisms underlying homeostatic plasticity in the <i>Drosophila</i> mushroom body in vivo.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 16606-16615. | 7.1  | 12        |
| 17 | Multiple network properties overcome random connectivity to enable stereotypic sensory responses.<br>Nature Communications, 2020, 11, 1023.                                                              | 12.8 | 12        |
| 18 | SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations. IEEE<br>Transactions on Neural Networks and Learning Systems, 2023, 34, 824-838.                                | 11.3 | 11        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Compensatory variability in network parameters enhances memory performance in the<br><i>Drosophila</i> mushroom body. Proceedings of the National Academy of Sciences of the United<br>States of America, 2021, 118, . | 7.1  | 8         |
| 20 | Outsourcing CREB translation to axons to survive. Nature Cell Biology, 2008, 10, 115-118.                                                                                                                              | 10.3 | 6         |
| 21 | How nitric oxide helps update memories. ELife, 2020, 9, .                                                                                                                                                              | 6.0  | 1         |