Kaiyu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273566/publications.pdf Version: 2024-02-01

KAIVILLIII

#	Article	IF	CITATIONS
1	Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Materials, 2020, 25, 858-865.	18.0	289
2	Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Research, 2019, 12, 2835-2841.	10.4	144
3	Ultra-highly stable zinc metal anode via 3D-printed g-C3N4 modulating interface for long life energy storage systems. Chemical Engineering Journal, 2021, 403, 126425.	12.7	123
4	Oxide cathodes for sodiumâ€ion batteries: Designs, challenges, and perspectives. , 2022, 4, 170-199.		76
5	A P2-type Na _{0.44} Mn _{0.6} Ni _{0.3} Cu _{0.1} O ₂ cathode material with high energy density for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12582-12588.	10.3	52
6	Highly dispersed Fe-Nx active sites on Graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction. Carbon, 2021, 171, 1-9.	10.3	46
7	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
8	Single-phase P2-type layered oxide with Cu-substitution for sodium ion batteries. Journal of Energy Chemistry, 2020, 43, 148-154.	12.9	45
9	Advanced Zn–I ₂ Battery with Excellent Cycling Stability and Good Rate Performance by a Multifunctional Iodine Host. ACS Applied Materials & Interfaces, 2022, 14, 8955-8962.	8.0	38
10	Facile preparation of ultrafine Ti ₄ O ₇ nanoparticle-embedded porous carbon for high areal capacity lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 20083-20092.	10.3	35
11	Three-dimensional TiO2-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithiumâ^'sulfur batteries. Journal of Power Sources, 2018, 400, 23-30.	7.8	35
12	An inactive metal supported oxide cathode material with high rate capability for sodium ion batteries. Energy Storage Materials, 2019, 20, 263-268.	18.0	32
13	Tuning morphology and structure of Fe–N–C catalyst for ultra-high oxygen reduction reaction action activity. International Journal of Hydrogen Energy, 2020, 45, 6380-6390.	7.1	22
14	Na+/vacancies promise excellent electrochemical properties for sodium ion batteries. Chemical Engineering Journal, 2020, 383, 123087.	12.7	21
15	Benefits of Copper and Magnesium Cosubstitution in Na _{0.5} Mn _{0.6} Ni _{0.4} O ₂ as a Superior Cathode for Sodium Ion Batteries. ACS Applied Energy Materials, 2019, 2, 844-851.	5.1	20
16	Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Science China Materials, 2021, 64, 2987-2996.	6.3	16
17	A Novel Cathode Based on Selenium Confined in Biomass Carbon and Graphene Oxide for Potassium elenium Battery. ChemElectroChem, 2020, 7, 4477-4483.	3.4	14
18	Nanoparticles Assembled Microspheres as a High-Rate Cathode Material for Sodium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A10-A14.	2.9	11

Kaiyu Liu

#	Article	IF	CITATIONS
19	Engineering Porous Quasiâ€5pherical Feâ^'Nâ^'C Nanocatalysts with Robust Oxygen Reduction Performance for Znâ€Air Battery Application. ChemNanoMat, 2020, 6, 1782-1788.	2.8	11
20	Bimetal–organic-framework derived CoTiO3/C hexagonal micro-prisms as high-performance anode materials for metal ion batteries. Materials Chemistry Frontiers, 2021, 5, 5760-5768.	5.9	10
21	Copper surface doping to improve the structure and surface properties of manganese-rich cathode materials for sodium ion batteries. Materials Chemistry Frontiers, 2019, 3, 2374-2379.	5.9	8
22	Investigation on the effect of Cu substitution on structure and Na-ion kinetics of layered P2-Na0.44Mn0.6Ni0.4O2 cathode material. Solid State Ionics, 2019, 329, 149-154.	2.7	7
23	Calcium-intercalated birnessite MnO ₂ anchored on carbon nanotubes as high-performance cathodes for aqueous zinc-ion batteries. Dalton Transactions, 2022, 51, 9477-9485.	3.3	7
24	A Zn ion hybrid capacitor with enhanced energy density for anode-free. Journal of Power Sources, 2022, 518, 230740.	7.8	6
25	Novel Energy Storage Center for High-Performance Rechargeable Aqueous Hybrid Zinc Energy Storage. Energy & Fuels, 2021, 35, 5352-5359.	5.1	5
26	A monocrystalline orthorhombic Na _{0.44} Mn _{0.9} Li _{0.1} O ₂ cathode with outstanding stability and negligible structural strain for sodium-ion batteries. Inorganic Chemistry Frontiers, 2021, 8, 2844-2853.	6.0	4