List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273509/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mutations in the COPI coatomer subunit α-COP induce release of Aβ-42 and amyloid precursor protein intracellular domain and increase tau oligomerization and release. Neurobiology of Aging, 2021, 101, 57-69.      | 3.1 | 6         |
| 2  | Regulation of the Human Papillomavirus Lifecyle through Post-Translational Modifications of the<br>Viral E2 Protein. Pathogens, 2021, 10, 793.                                                                      | 2.8 | 7         |
| 3  | Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy. Life Science Alliance, 2021, 4, e202000889.                                                                      | 2.8 | 1         |
| 4  | The SMC5/6 Complex Represses the Replicative Program of High-Risk Human Papillomavirus Type 31.<br>Pathogens, 2020, 9, 786.                                                                                         | 2.8 | 20        |
| 5  | Pyk2 Regulates Human Papillomavirus Replication by Tyrosine Phosphorylation of the E2 Protein.<br>Journal of Virology, 2020, 94, .                                                                                  | 3.4 | 4         |
| 6  | Optimization of human papillomavirus-based pseudovirus techniques for efficient gene transfer.<br>Scientific Reports, 2020, 10, 15517.                                                                              | 3.3 | 6         |
| 7  | Phosphorylation of the Human Papillomavirus E2 Protein at Tyrosine 138 Regulates Episomal<br>Replication. Journal of Virology, 2020, 94, .                                                                          | 3.4 | 6         |
| 8  | Human Papillomavirus 31 Tyrosine 102 Regulates Interaction with E2 Binding Partners and Episomal<br>Maintenance. Journal of Virology, 2020, 94, .                                                                   | 3.4 | 5         |
| 9  | Interaction between alpha-COP and SMN ameliorates disease phenotype in a mouse model of spinal muscular atrophy. Biochemical and Biophysical Research Communications, 2019, 514, 530-537.                           | 2.1 | 5         |
| 10 | Phosphorylation of a Conserved Tyrosine in the Papillomavirus E2 Protein Regulates Brd4 Binding and<br>Viral Replication. Journal of Virology, 2019, 93, .                                                          | 3.4 | 14        |
| 11 | Acetylation of E2 by P300 Mediates Topoisomerase Entry at the Papillomavirus Replicon. Journal of Virology, 2019, 93, .                                                                                             | 3.4 | 15        |
| 12 | Human Papillomavirus Replication Regulation by Acetylation of a Conserved Lysine in the E2 Protein.<br>Journal of Virology, 2018, 92, .                                                                             | 3.4 | 18        |
| 13 | Emerging role of FGF receptors in papillomavirus replication. Future Virology, 2018, 13, 761-764.                                                                                                                   | 1.8 | 0         |
| 14 | Papillomavirus E2 protein is regulated by specific fibroblast growth factor receptors. Virology, 2018, 521, 62-68.                                                                                                  | 2.4 | 8         |
| 15 | SMN deficiency negatively impacts red pulp macrophages and spleen development in mouse models of<br>Spinal Muscular Atrophy. Human Molecular Genetics, 2017, 26, ddx008.                                            | 2.9 | 26        |
| 16 | Discovery of a Small Molecule Probe That Post-Translationally Stabilizes the Survival Motor Neuron<br>Protein for the Treatment of Spinal Muscular Atrophy. Journal of Medicinal Chemistry, 2017, 60,<br>4594-4610. | 6.4 | 13        |
| 17 | Association of Human Papillomavirus 16 E2 with Rad50-Interacting Protein 1 Enhances Viral DNA Replication. Journal of Virology, 2017, 91, .                                                                         | 3.4 | 5         |
| 18 | Kinase Activity of Fibroblast Growth Factor Receptor 3 Regulates Activity of the Papillomavirus E2<br>Protein. Journal of Virology, 2017, 91, .                                                                     | 3.4 | 11        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phosphorylation of the Bovine Papillomavirus E2 Protein on Tyrosine Regulates Its Transcription and Replication Functions. Journal of Virology, 2017, 91, .                                                          | 3.4 | 14        |
| 20 | In vitro and in vivo effects of 2,4 diaminoquinazoline inhibitors of the decapping scavenger enzyme DcpS: Context-specific modulation of SMN transcript levels. PLoS ONE, 2017, 12, e0185079.                        | 2.5 | 16        |
| 21 | Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells. PLoS ONE, 2016, 11, e0163954.                                                                                                                         | 2.5 | 15        |
| 22 | The Replicative Consequences of Papillomavirus E2 Protein Binding to the Origin Replication Factor ORC2. PLoS Pathogens, 2016, 12, e1005934.                                                                         | 4.7 | 20        |
| 23 | Small Molecules in Development for the Treatment of Spinal Muscular Atrophy. Journal of Medicinal Chemistry, 2016, 59, 10067-10083.                                                                                  | 6.4 | 55        |
| 24 | ML372 blocks SMN ubiquitination and improves spinal muscular atrophy pathology in mice. JCI Insight, 2016, 1, e88427.                                                                                                | 5.0 | 16        |
| 25 | Molecular Probing of the HPV-16 E6 Protein Alpha Helix Binding Groove with Small Molecule<br>Inhibitors. PLoS ONE, 2016, 11, e0149845.                                                                               | 2.5 | 19        |
| 26 | Human papillomavirus oncogenic E6 protein regulates human $\hat{l}^2$ -defensin 3 (hBD3) expression via the tumor suppressor protein p53. Oncotarget, 2016, 7, 27430-27444.                                          | 1.8 | 22        |
| 27 | Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication.<br>Virology, 2015, 478, 129-136.                                                                                  | 2.4 | 25        |
| 28 | Papillomavirus Replication. , 2015, , 103-132.                                                                                                                                                                       |     | 0         |
| 29 | α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth.<br>Human Molecular Genetics, 2015, 24, 7295-7307.                                                                 | 2.9 | 30        |
| 30 | Autophagy dysregulation in cell culture and animals models of spinal muscular atrophy. Molecular and Cellular Neurosciences, 2014, 61, 133-140.                                                                      | 2.2 | 34        |
| 31 | COPI transport complexes bind to specific RNAs in neuronal cells. Human Molecular Genetics, 2013, 22, 729-736.                                                                                                       | 2.9 | 40        |
| 32 | Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 Domain–Mediated PUMA<br>Degradation. Journal of Investigative Dermatology, 2013, 133, 2247-2254.                                                  | 0.7 | 57        |
| 33 | Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy. Human Molecular Genetics, 2013, 22, 4043-4052. | 2.9 | 35        |
| 34 | Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drugâ€like<br>compounds. EMBO Molecular Medicine, 2013, 5, 1103-1118.                                                      | 6.9 | 43        |
| 35 | Genomic instability. Cell Cycle, 2013, 12, 13-13.                                                                                                                                                                    | 2.6 | 4         |
| 36 | Acetylation of Conserved Lysines in Bovine Papillomavirus E2 by p300. Journal of Virology, 2013, 87, 1497-1507.                                                                                                      | 3.4 | 27        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structure Based Identification and Characterization of Flavonoids That Disrupt Human<br>Papillomavirus-16 E6 Function. PLoS ONE, 2013, 8, e84506.                                                                    | 2.5 | 68        |
| 38 | Identification of Novel Compounds That Increase SMN Protein Levels Using an Improved SMN2<br>Reporter Cell Assay. Journal of Biomolecular Screening, 2012, 17, 481-495.                                              | 2.6 | 24        |
| 39 | The histone acetyltransferase PCAF regulates p21 transcription through stress-induced acetylation of histone H3. Cell Cycle, 2012, 11, 2458-2466.                                                                    | 2.6 | 84        |
| 40 | PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle, 2012, 11, 2717-2728.                                                                                                                   | 2.6 | 49        |
| 41 | Therapeutic strategies for the treatment of spinal muscular atrophy. Future Medicinal Chemistry, 2012, 4, 1733-1750.                                                                                                 | 2.3 | 21        |
| 42 | Transcriptional Repression of E-Cadherin by Human Papillomavirus Type 16 E6. PLoS ONE, 2012, 7, e48954.                                                                                                              | 2.5 | 73        |
| 43 | Discovery, Synthesis, and Biological Evaluation of Novel SMN Protein Modulators. Journal of Medicinal Chemistry, 2011, 54, 6215-6233.                                                                                | 6.4 | 38        |
| 44 | Differential regulation of the SMN2 gene by individual HDAC proteins. Biochemical and Biophysical Research Communications, 2011, 414, 25-30.                                                                         | 2.1 | 21        |
| 45 | The COPI vesicle complex binds and moves with survival motor neuron within axons. Human Molecular Genetics, 2011, 20, 1701-1711.                                                                                     | 2.9 | 71        |
| 46 | Myogenic MicroRNA Expression Requires ATP-Dependent Chromatin Remodeling Enzyme Function.<br>Molecular and Cellular Biology, 2010, 30, 3176-3186.                                                                    | 2.3 | 30        |
| 47 | Valproate and Bone Loss: iTRAQ Proteomics Show that Valproate Reduces Collagens and Osteonectin in SMA Cells. Journal of Proteome Research, 2010, 9, 4228-4233.                                                      | 3.7 | 37        |
| 48 | Tax1BP1 Interacts with Papillomavirus E2 and Regulates E2-Dependent Transcription and Stability.<br>Journal of Virology, 2009, 83, 2274-2284.                                                                        | 3.4 | 40        |
| 49 | Topography of bovine papillomavirus E2 protein on the viral genome during the cell cycle. Virology, 2009, 393, 258-264.                                                                                              | 2.4 | 6         |
| 50 | Determinants of Stability for the E6 Protein of Papillomavirus Type 16. Journal of Molecular Biology, 2009, 386, 1123-1137.                                                                                          | 4.2 | 24        |
| 51 | Binding of Human Papillomavirus Type 16 E6 to E6AP Is Not Required for Activation of hTERT. Journal of<br>Virology, 2008, 82, 71-76.                                                                                 | 3.4 | 35        |
| 52 | hAda3 Degradation by Papillomavirus Type 16 E6 Correlates with Abrogation of the p14ARF-p53 Pathway<br>and Efficient Immortalization of Human Mammary Epithelial Cells. Journal of Virology, 2008, 82,<br>3912-3920. | 3.4 | 27        |
| 53 | Interaction of Papillomavirus E2 Protein with the Brm Chromatin Remodeling Complex Leads to Enhanced Transcriptional Activation. Journal of Virology, 2007, 81, 2213-2220.                                           | 3.4 | 24        |
| 54 | Mitotic Kinesin-Like Protein 2 Binds and Colocalizes with Papillomavirus E2 during Mitosis. Journal of Virology, 2007, 81, 1736-1745.                                                                                | 3.4 | 24        |

4

| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Research, 2006, 35, 371-389.                                                              | 14.5 | 186       |
| 56 | ChlR1 Is Required for Loading Papillomavirus E2 onto Mitotic Chromosomes and Viral Genome<br>Maintenance. Molecular Cell, 2006, 24, 867-876.                                                                              | 9.7  | 101       |
| 57 | Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Research, 2006, 72, 49-59.                                                     | 4.1  | 71        |
| 58 | Splicing of a Critical Exon of Human Survival Motor Neuron Is Regulated by a Unique Silencer Element<br>Located in the Last Intron. Molecular and Cellular Biology, 2006, 26, 1333-1346.                                  | 2.3  | 393       |
| 59 | The DNA helicase ChlR1 is required for sister chromatid cohesion in mammalian cells. Journal of Cell Science, 2006, 119, 4857-4865.                                                                                       | 2.0  | 97        |
| 60 | Opposing effects of bovine papillomavirus type 1 E6 and E7 genes on Fas-mediated apoptosis. Oncogene, 2005, 24, 3942-3953.                                                                                                | 5.9  | 3         |
| 61 | Immortalization of Human Mammary Epithelial Cells Is Associated with Inactivation of the p14 ARF -p53<br>Pathway. Molecular and Cellular Biology, 2004, 24, 2144-2152.                                                    | 2.3  | 28        |
| 62 | Human Papillomavirus Type 16 E6 Amino Acid 83 Variants Enhance E6-Mediated MAPK Signaling and<br>Differentially Regulate Tumorigenesis by Notch Signaling and Oncogenic Ras. Journal of Virology,<br>2004, 78, 5934-5945. | 3.4  | 115       |
| 63 | Human Papillomavirus Type 16 E6 Promotes Retinoblastoma Protein Phosphorylation and Cell Cycle<br>Progression. Journal of Virology, 2004, 78, 13769-13778.                                                                | 3.4  | 42        |
| 64 | In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. Rna, 2004, 10, 1291-1305.                                                                              | 3.5  | 125       |
| 65 | Indoprofen Upregulates the Survival Motor Neuron Protein through a Cyclooxygenase-Independent<br>Mechanism. Chemistry and Biology, 2004, 11, 1489-1493.                                                                   | 6.0  | 135       |
| 66 | Design and Characterization of Helical Peptides that Inhibit the E6 Protein of Papillomavirusâ€,‡.<br>Biochemistry, 2004, 43, 7421-7431.                                                                                  | 2.5  | 71        |
| 67 | An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy.<br>Biochemical and Biophysical Research Communications, 2004, 315, 381-388.                                                  | 2.1  | 105       |
| 68 | The Regulation and Regulatory Activities of Alternative Splicing of the SMN Gene. Critical Reviews in<br>Eukaryotic Gene Expression, 2004, 14, 271-286.                                                                   | 0.9  | 48        |
| 69 | The Ewing's sarcoma protein interacts with the Tudor domain of the survival motor neuron protein.<br>Molecular Brain Research, 2003, 119, 37-49.                                                                          | 2.3  | 47        |
| 70 | SignalsThat Dictate Nuclear Localization of Human Papillomavirus Type 16Oncoprotein E6 in<br>LivingCells. Journal of Virology, 2003, 77, 13232-13247.                                                                     | 3.4  | 52        |
| 71 | A transgene carrying an A2G missense mutation in the SMN gene modulates phenotypic severity in mice with severe (type I) spinal muscular atrophy. Journal of Cell Biology, 2003, 160, 41-52.                              | 5.2  | 140       |
| 72 | A Mutant of Human Papillomavirus Type 16 E6 Deficient in Binding α-Helix Partners Displays Reduced<br>Oncogenic Potential In Vivo. Journal of Virology, 2002, 76, 13039-13048.                                            | 3.4  | 53        |

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | A Direct Interaction between the Survival Motor Neuron Protein and p53 and Its Relationship to Spinal Muscular Atrophy. Journal of Biological Chemistry, 2002, 277, 2852-2859.                                                                                 | 3.4  | 112       |
| 74 | Genetic Analysis of High-Risk E6 in Episomal Maintenance of Human Papillomavirus Genomes in Primary<br>Human Keratinocytes. Journal of Virology, 2002, 76, 11359-11364.                                                                                        | 3.4  | 75        |
| 75 | SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2beta1. Human Molecular Genetics, 2002, 11, 577-587.                                                                              | 2.9  | 127       |
| 76 | Bovine Papillomavirus Type 1 E6-Induced Sensitization to Apoptosis Is Distinct from Its Transforming Activity. Virology, 2002, 295, 230-237.                                                                                                                   | 2.4  | 7         |
| 77 | Cellular Steady-State Levels of "High Risk―but Not "Low Risk―Human Papillomavirus (HPV) E6 Proteins<br>Are Increased by Inhibition of Proteasome-Dependent Degradation Independent of Their p53- and<br>E6AP-Binding Capabilities. Virology, 2002, 299, 72-87. | 2.4  | 37        |
| 78 | Solution Structure Determination and Mutational Analysis of the Papillomavirus E6 Interacting<br>Peptide of E6APâ€,‡. Biochemistry, 2001, 40, 1293-1299.                                                                                                       | 2.5  | 57        |
| 79 | AMF1 (GPS2) Modulates p53 Transactivation. Molecular and Cellular Biology, 2001, 21, 5913-5924.                                                                                                                                                                | 2.3  | 49        |
| 80 | AMF-1/Gps2 Binds p300 and Enhances Its Interaction with Papillomavirus E2 Proteins. Journal of<br>Virology, 2000, 74, 5872-5879.                                                                                                                               | 3.4  | 72        |
| 81 | Interaction with CBP/p300 enables the bovine papillomavirus type 1 E6 oncoprotein to downregulate CBP/p300-mediated transactivation by p53. Journal of General Virology, 2000, 81, 2617-2623.                                                                  | 2.9  | 42        |
| 82 | Rb-independent Induction of Apoptosis by Bovine Papillomavirus Type 1 E7 in Response to Tumor<br>Necrosis Factor α. Journal of Biological Chemistry, 2000, 275, 30894-30900.                                                                                   | 3.4  | 13        |
| 83 | Human Papillomavirus Type 16 E6-enhanced Susceptibility of L929 Cells to Tumor Necrosis Factor α<br>Correlates with Increased Accumulation of Reactive Oxygen Species. Journal of Biological Chemistry,<br>1999, 274, 24819-24827.                             | 3.4  | 57        |
| 84 | The bovine papillomavirus type 1 E6 oncoprotein sensitizes cells to tumor necrosis factor alpha-induced apoptosis. Oncogene, 1999, 18, 607-615.                                                                                                                | 5.9  | 11        |
| 85 | Two distinct regions of the BPV1 E1 replication protein interact with the activation domain of E2.<br>Virus Research, 1999, 65, 141-154.                                                                                                                       | 2.2  | 10        |
| 86 | Structural Correlates for Enhanced Stability in the E2 DNA-Binding Domain from Bovine<br>Papillomavirusâ€,‡. Biochemistry, 1999, 38, 16115-16124.                                                                                                              | 2.5  | 22        |
| 87 | Multiple Functions of Human Papillomavirus Type 16 E6 Contribute to the Immortalization of Mammary<br>Epithelial Cells. Journal of Virology, 1999, 73, 7297-7307.                                                                                              | 3.4  | 170       |
| 88 | 1H, 15N, and 13C NMR resonance assignments for the DNA-binding domain of the BPV-1 E2 protein.<br>Journal of Biomolecular NMR, 1998, 11, 457-458.                                                                                                              | 2.8  | 7         |
| 89 | Polyomavirus Large T Can Support DNA Replication in Human Cells. Virology, 1998, 240, 50-56.                                                                                                                                                                   | 2.4  | 3         |
| 90 | SMN oligomerization defect correlates with spinal muscular atrophy severity. Nature Genetics, 1998, 19, 63-66.                                                                                                                                                 | 21.4 | 470       |

6

| #   | ARTICLE                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Crystal structure of the E2 DNA-binding domain from human papillomavirus type 16: implications for<br>its DNA binding-site selection mechanism 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998,<br>284, 1479-1489.                                           | 4.2  | 88        |
| 92  | Identification of an α Helical Motif Sufficient for Association with Papillomavirus E6. Journal of<br>Biological Chemistry, 1998, 273, 13537-13544.                                                                                                                        | 3.4  | 90        |
| 93  | Functional Interaction of the Bovine Papillomavirus E2 Transactivation Domain with TFIIB. Journal of<br>Virology, 1998, 72, 1013-1019.                                                                                                                                     | 3.4  | 54        |
| 94  | Transactivation-Competent Bovine Papillomavirus E2 Protein Is Specifically Required for Efficient<br>Repression of Human Papillomavirus Oncogene Expression and for Acute Growth Inhibition of<br>Cervical Carcinoma Cell Lines. Journal of Virology, 1998, 72, 3925-3934. | 3.4  | 101       |
| 95  | Mutational Analysis of Transcriptional Activation by the Bovine Papillomavirus Type 1 E6. Virology, 1997, 236, 30-36.                                                                                                                                                      | 2.4  | 14        |
| 96  | The BPV-1 E2 DNA-Contact Helix Cysteine Is Required for Transcriptional Activation but Not Replication in Mammalian Cells. Virology, 1996, 217, 301-310.                                                                                                                   | 2.4  | 13        |
| 97  | Genetic Analysis of the Bovine Papillomavirus E2 Transcriptional Activation Domain. Virology, 1996, 221, 34-43.                                                                                                                                                            | 2.4  | 42        |
| 98  | A novel method for selective isotope labeling of bacterially expressed proteins. Journal of<br>Biomolecular NMR, 1995, 5, 93-96.                                                                                                                                           | 2.8  | 37        |
| 99  | Isolation, sequence analysis and characterization of a cDNA encoding human chaperonin 10.<br>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 189-190.                                                                                                | 2.4  | 2         |
| 100 | The Tryptophan Bridge Is a Critical Feature of the Papillomavirus E2 DNA Binding Domain. Virology, 1993, 197, 391-396.                                                                                                                                                     | 2.4  | 17        |
| 101 | Antigen Presentation and T-Cell Activation in Epidermodysplasia Verruciformis. Journal of<br>Investigative Dermatology, 1990, 94, 769-776.                                                                                                                                 | 0.7  | 70        |
| 102 | Bovine papillomavirus E2 trans-activating gene product binds to specific sites in papillomavirus DNA.<br>Nature, 1987, 325, 70-73.                                                                                                                                         | 27.8 | 404       |
| 103 | Papillomaviruses and Interferon. Novartis Foundation Symposium, 1986, 120, 221-242.                                                                                                                                                                                        | 1.1  | 5         |
| 104 | X-linked Inheritance of Epidermodysplasia Verruciformis. Archives of Dermatology, 1985, 121, 864.                                                                                                                                                                          | 1.4  | 78        |
| 105 | Response of warts in epidermodysplasia verruciformis to treatment with systemic and intralesional alpha interferon. Journal of the American Academy of Dermatology, 1984, 11, 197-202.                                                                                     | 1.2  | 74        |