
Songling Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273141/publications.pdf Version: 2024-02-01

SONCLING BAL

#	Article	IF	CITATIONS
1	Ethyleneâ€activated PpERF105 induces the expression of the repressorâ€ŧype R2R3â€MYB gene <i>PpMYB140to inhibit anthocyanin biosynthesis in red pear fruit. Plant Journal, 2021, 105, 167-181.</i>	5.7	76
2	Changes in phytohormone content and associated gene expression throughout the stages of pear (<i>Pyrus pyrifolia</i> Nakai) dormancy. Tree Physiology, 2021, 41, 529-543.	3.1	19
3	Bud endodormancy in deciduous fruit trees: advances and prospects. Horticulture Research, 2021, 8, 139.	6.3	60
4	High-quality genome assembly of 'Cuiguan' pear (Pyrus pyrifolia) as a reference genome for identifying regulatory genes and epigenetic modifications responsible for bud dormancy. Horticulture Research, 2021, 8, 197.	6.3	44
5	Alternative splicing of the dormancy-associated MADS-box transcription factor gene PpDAM1 is associated with flower bud dormancy in â€~Dangshansu' pear (Pyrus pyrifolia white pear group). Plant Physiology and Biochemistry, 2021, 166, 1096-1108.	5.8	7
6	Ethylene mediates the branching of the jasmonateâ€induced flavonoid biosynthesis pathway by suppressing anthocyanin biosynthesis in red Chinese pear fruits. Plant Biotechnology Journal, 2020, 18, 1223-1240.	8.3	101
7	Light-Induced Basic/Helix-Loop-Helix64 Enhances Anthocyanin Biosynthesis and Undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-Mediated Degradation in Pear. Plant Physiology, 2020, 184, 1684-1701.	4.8	46
8	R2R3-MYB transcription factor PpMYB17 positively regulates flavonoid biosynthesis in pear fruit. Planta, 2020, 252, 59.	3.2	46
9	Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli. BMC Plant Biology, 2020, 20, 388.	3.6	40
10	ABAâ€responsive ABREâ€BINDING FACTOR3 activates <i>DAM3</i> expression to promote bud dormancy in Asian pear. Plant, Cell and Environment, 2020, 43, 1360-1375.	5.7	75
11	Functional Genomics. Compendium of Plant Genomes, 2019, , 265-277.	0.5	0
12	Two Bâ€box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with <i>Pyrus pyrifolia</i> ELONGATED HYPOCOTYL 5 in the peel of pear fruit. Plant Journal, 2019, 100, 1208-1223.	5.7	115
13	Phylogenetic, Molecular, and Functional Characterization of PpyCBF Proteins in Asian Pears (Pyrus) Tj ETQq1 1 0.7	784314 rg 4.1	gBT /Overlo
14	PpyGAST1 is potentially involved in bud dormancy release by integrating the GA biosynthesis and ABA signaling in â€~Suli' pear (Pyrus pyrifolia White Pear Group). Environmental and Experimental Botany, 2019, 162, 302-312.	4.2	42
15	BBX16, a Bâ€box protein, positively regulates lightâ€induced anthocyanin accumulation by activating <i>MYB10</i> in red pear. Plant Biotechnology Journal, 2019, 17, 1985-1997.	8.3	184
16	PpCBFs selectively regulate PpDAMs and contribute to the pear bud endodormancy process. Plant Molecular Biology, 2019, 99, 575-586.	3.9	26
17	Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in â€~Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology, 2019, 99, 67-78.	3.9	123
18	Robustness improvement of NIR-based determination of soluble solids in apple fruit by local calibration. Postharvest Biology and Technology, 2018, 139, 82-90.	6.0	36

Songling Bai

#	Article	IF	CITATIONS
19	Application of Systemic Transcriptional Gene Silencing for Plant Breeding. , 2018, , 247-263.		0
20	PpHB22, a member of HD-Zip proteins, activates PpDAM1 to regulate bud dormancy transition in â€~Suli' pear (Pyrus pyrifolia White Pear Group). Plant Physiology and Biochemistry, 2018, 127, 355-365.	5.8	30
21	Genome-wide survey and analysis of the TIFY gene family and its potential role in anthocyanin synthesis in Chinese sand pear (Pyrus pyrifolia). Tree Genetics and Genomes, 2018, 14, 1.	1.6	16
22	The blue light signal transduction pathway is involved in anthocyanin accumulation in â€~Red Zaosu' pear. Planta, 2018, 248, 37-48.	3.2	97
23	Efficient Breeding and Cultivation of Type 2 Red-fleshed Apple Cultivars Using a Search System for Suitable Apple Cultivar Combination. Horticultural Plant Journal, 2018, 4, 219-225.	5.0	6
24	Genome wide identification and predicted functional analyses of NAC transcription factors in Asian pears. BMC Plant Biology, 2018, 18, 214.	3.6	36
25	Studies on pear parthenocarpy induced by exogenous plant growth regulators. Acta Horticulturae, 2018, , 21-26.	0.2	2
26	Abscisic Acid (ABA) Promotes the Induction and Maintenance of Pear (Pyrus pyrifolia White Pear) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
27	Insertion of a transposonâ€like sequence in the 5′â€flanking region of the <i><scp>YUCCA</scp></i> gene causes the stony hard phenotype. Plant Journal, 2018, 96, 815-827.	5.7	41
28	Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism. Plant and Cell Physiology, 2017, 58, 1378-1390.	3.1	99
29	Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Scientific Reports, 2017, 7, 63.	3.3	67
30	Repression of TERMINAL FLOWER1 primarily mediates floral induction in pear (Pyrus pyrifolia Nakai) concomitant with change in gene expression of plant hormone-related genes and transcription factors. Journal of Experimental Botany, 2017, 68, 4899-4914.	4.8	31
31	Response of miR156-SPL Module during the Red Peel Coloration of Bagging-Treated Chinese Sand Pear (Pyrus pyrifolia Nakai). Frontiers in Physiology, 2017, 8, 550.	2.8	71
32	Identification, classification, and transcription profiles of the B-type response regulator family in pear. PLoS ONE, 2017, 12, e0171523.	2.5	28
33	Epigenetic regulation of MdMYB1 is associated with paper bagging-induced red pigmentation of apples. Planta, 2016, 244, 573-586.	3.2	47
34	Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics, 2016, 17, 230.	2.8	25

35	Involvement of <i>EARLY BUD-BREAK</i> , an AP2/ERF Transcription Factor Gene, in Bud Break in Japanese Pear (<i>Pyrus pyrifolia</i> Nakai) Lateral Flower Buds: Expression, Histone Modifications and Possible Target Genes. Plant and Cell Physiology, 2016, 57, 1038-1047.	3.1	49
36	Physiological differences between bud breaking and flowering after dormancy completion revealed by <i>DAM</i> and <i>FT/TFL1</i> expression in Japanese pear (<i>Pyrus pyrifolia</i>). Tree Physiology, 2016, 36, 109-120.	3.1	30

SONGLING BAI

77

#	Article	IF	CITATIONS
37	Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (<i>Pyrus pyrifolia</i> white pear group) flower bud. Journal of Experimental Botany, 2016, 67, 239-257.	4.8	170
38	Knockdown of Carotenoid Cleavage Dioxygenase 4 (CCD4) via Virus-Induced Gene Silencing Confers Yellow Coloration in Peach Fruit: Evaluation of Gene Function Related to Fruit Traits. Plant Molecular Biology Reporter, 2016, 34, 257-264.	1.8	38
39	Epigenome Editing of Potato by Grafting Using Transgenic Tobacco as siRNA Donor. PLoS ONE, 2016, 11, e0161729.	2.5	34
40	Retrotransposon-based sequence-specific amplification polymorphism markers reveal that cultivated Pyrus ussuriensis originated from an interspecific hybridization. European Journal of Horticultural Science, 2016, 81, 264-272.	0.7	11
41	The crucial role of PpMYB10.1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biology, 2015, 15, 280.	3.6	100
42	Development of flower buds in the Japanese pear (Pyrus pyrifolia) from late autumn to early spring. Tree Physiology, 2015, 35, 653-662.	3.1	36
43	Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia). Tree Genetics and Genomes, 2015, 11, 1.	1.6	17
44	Histone modification and signalling cascade of the <i>dormancyâ€associated</i> â€ <scp><i>MADS</i></scp> <i>â€box</i> gene, <scp><i>PpMADS</i></scp> <i>13â€1</i> , in <scp>J</scp> apanese pear (<scp><i>P</i></scp> <i>yrus) Tj ETQq0</i>	0 ⁵ 0 ⁷ rgBT /	Overlock 10
45	An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta, 2014, 240, 1051-1062.	3.2	123
46	Cloning and Characterization of miRNAs and Their Targets, Including a Novel miRNA-Targeted NBS–LRR Protein Class Gene in Apple (Golden Delicious). Molecular Plant, 2014, 7, 218-230.	8.3	83
47	Characterization of 10 MADS-box genes from Pyrus pyrifolia and their differential expression during fruit development and ripening. Gene, 2013, 528, 183-194.	2.2	14
48	Transcriptome Analysis of Japanese Pear (Pyrus pyrifolia Nakai) Flower Buds Transitioning Through Endodormancy. Plant and Cell Physiology, 2013, 54, 1132-1151.	3.1	147
49	Expression and genomic structure of the dormancy-associated MADS box genes MADS13 in Japanese pears (Pyrus pyrifolia Nakai) that differ in their chilling requirement for endodormancy release. Tree Physiology, 2013, 33, 654-667.	3.1	91
50	Distribution of <i>MdACS3</i> null alleles in apple (<i>Malus</i> × <i>domestica</i> Borkh.) and its relevance to the fruit ripening characters. Breeding Science, 2012, 62, 46-52.	1.9	13
51	Determination S-Genotypes and Identification of Five Novel S-RNase Alleles in Wild Malus Species. Plant Molecular Biology Reporter, 2012, 30, 453-461.	1.8	13
52	Isolation and S-genotyping application of S-allelic polymorphic MdSLFBs in apple (Malus domestica) Tj ETQq0 0 0	rgBT /Ove	erlgck 10 Tf !
53	Graft-Transmitted siRNA Signal from the Root Induces Visual Manifestation of Endogenous Post-Transcriptional Gene Silencing in the Scion. PLoS ONE, 2011, 6, e16895.	2.5	43

A mobile signal transported over a long distance induces systemic transcriptional gene silencing in a grafted partner. Journal of Experimental Botany, 2011, 62, 4561-4570. 4.8