Sarah A Strode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6273066/publications.pdf Version: 2024-02-01

SADAH & STRODE

#	Article	IF	CITATIONS
1	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	12.9	1,649
2	Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2063-2090.	4.9	570
3	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	3.6	388
4	Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change. Environmental Research Letters, 2013, 8, 034005.	5.2	381
5	Mercury sources, distribution, and bioavailability in the North Pacific Ocean: Insights from data and models. Global Biogeochemical Cycles, 2009, 23, .	4.9	378
6	Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 3063-3085.	4.9	361
7	Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. Journal of Geophysical Research, 2007, 112, .	3.3	351
8	Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 5277-5298.	4.9	288
9	Multi-model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of historical and projected future changes. Atmospheric Chemistry and Physics, 2013, 13, 7997-8018.	4.9	279
10	Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmospheric Chemistry and Physics, 2013, 13, 2563-2587.	4.9	257
11	Multi-decadal aerosol variations from 1980 to 2009: a perspective from observations and a global model. Atmospheric Chemistry and Physics, 2014, 14, 3657-3690.	4.9	240
12	An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic. Environmental Science & Technology, 2010, 44, 8574-8580.	10.0	225
13	Abrupt decline in tropospheric nitrogen dioxide over China after the outbreak of COVID-19. Science Advances, 2020, 6, eabc2992.	10.3	208
14	Air-sea exchange in the global mercury cycle. Global Biogeochemical Cycles, 2007, 21, .	4.9	193
15	Global 3â€D landâ€oceanâ€atmosphere model for mercury: Presentâ€day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycles, 2008, 22, .	4.9	174
16	Trends in global tropospheric ozone inferred from a composite record of TOMS/OMI/MLS/OMPS satellite measurements and the MERRA-2 GMI simulation. Atmospheric Chemistry and Physics, 2019, 19, 3257-3269.	4.9	119
17	The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 2016, 16, 9847-9862.	4.9	101
18	Trends and variability in surface ozone over the United States. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9020-9042.	3.3	90

SARAH A STRODE

#	Article	IF	CITATIONS
19	Transâ€Pacific transport of mercury. Journal of Geophysical Research, 2008, 113, .	3.3	83
20	Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 2020, 6, .	10.3	64
21	The POLARCAT Model Intercomparison Project (POLMIP): overview and evaluation with observations. Atmospheric Chemistry and Physics, 2015, 15, 6721-6744.	4.9	62
22	Sources, fate and transport of atmospheric mercury from Asia. Environmental Chemistry, 2008, 5, 121.	1.5	61
23	Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmospheric Chemistry and Physics, 2013, 13, 4057-4072.	4.9	61
24	Global changes in the diurnal cycle of surface ozone. Atmospheric Environment, 2019, 199, 323-333.	4.1	53
25	Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmospheric Chemistry and Physics, 2019, 19, 13701-13723.	4.9	52
26	Description of the NASA GEOS Composition Forecast Modeling System GEOS F v1.0. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002413.	3.8	52
27	Use of North American and European air quality networks to evaluate global chemistry–climate modeling of surface ozone. Atmospheric Chemistry and Physics, 2015, 15, 10581-10596.	4.9	50
28	Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models. Atmospheric Chemistry and Physics, 2015, 15, 11789-11805.	4.9	47
29	Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017. Environmental Science & Technology, 2021, 55, 4389-4398.	10.0	47
30	Greenhouse Gas Emissions from U.S. Institutions of Higher Education. Journal of the Air and Waste Management Association, 2010, 60, 568-573.	1.9	46
31	The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere. Bulletin of the American Meteorological Society, 2022, 103, E761-E790.	3.3	39
32	Impact of mercury emissions from historic gold and silver mining: Global modeling. Atmospheric Environment, 2009, 43, 2012-2017.	4.1	37
33	Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmospheric Chemistry and Physics, 2018, 18, 16809-16828.	4.9	34
34	Global atmospheric chemistry – which air matters. Atmospheric Chemistry and Physics, 2017, 17, 9081-9102.	4.9	32
35	Interpreting space-based trends in carbon monoxide with multiple models. Atmospheric Chemistry and Physics, 2016, 16, 7285-7294.	4.9	31
36	Changes in Global Tropospheric OH Expected as a Result of Climate Change Over the Last Several Decades. Journal of Geophysical Research D: Atmospheres, 2018, 123, 10,774.	3.3	31

SARAH A STRODE

#	Article	IF	CITATIONS
37	Interannual variability of long-range transport as seen at the Mt. Bachelor observatory. Atmospheric Chemistry and Physics, 2009, 9, 557-572.	4.9	28
38	Vertical transport of anthropogenic mercury in the ocean. Global Biogeochemical Cycles, 2010, 24, .	4.9	28
39	Correction to "Global 3â€D landâ€oceanâ€atmosphere model for mercury: Presentâ€day versus preindustrial cycles and anthropogenic enrichment factors for depositionâ€. Global Biogeochemical Cycles, 2008, 22, .	4.9	24
40	Disentangling the Drivers of the Summertime Ozoneâ€Temperature Relationship Over the United States. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10503-10524.	3.3	24
41	Strong sensitivity of the isotopic composition of methane to the plausible range of tropospheric chlorine. Atmospheric Chemistry and Physics, 2020, 20, 8405-8419.	4.9	21
42	Detection of carbon monoxide trends in the presence of interannual variability. Journal of Geophysical Research D: Atmospheres, 2013, 118, 12,257.	3.3	19
43	On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmospheric Chemistry and Physics, 2020, 20, 13011-13022.	4.9	18
44	Emission and transport of cesiumâ€137 from boreal biomass burning in the summer of 2010. Journal of Geophysical Research, 2012, 117, .	3.3	17
45	How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmospheric Measurement Techniques, 2018, 11, 2653-2668.	3.1	15
46	A cloud-ozone data product from Aura OMI and MLS satellite measurements. Atmospheric Measurement Techniques, 2017, 10, 4067-4078.	3.1	13
47	Surface Ozoneâ€Meteorology Relationships: Spatial Variations and the Role of the Jet Stream. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032735.	3.3	12
48	Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: insights from airborne and satellite observations and modeling. Atmospheric Chemistry and Physics, 2018, 18, 10955-10971.	4.9	10
49	The Geos-Chem model. , 2009, , 533-545.		10
50	Variability of O3 and NO2 profile shapes during DISCOVER-AQ: Implications for satellite observations and comparisons to model-simulated profiles. Atmospheric Environment, 2016, 147, 133-156.	4.1	9
51	The description and validation of the computationally Efficient CH ₄ –CO–OH (ECCOHv1.01) chemistry module for 3-D model applications. Geoscientific Model Development, 2016, 9, 799-822.	3.6	9
52	The impacts of fossil fuel emission uncertainties and accounting for 3-D chemical CO2 production on inverse natural carbon flux estimates from satellite and in situ data. Environmental Research Letters, 2020, 15, 085002.	5.2	7
53	Attribution of Chemistry-Climate Model Initiative (CCMI) ozone radiative flux bias from satellites. Atmospheric Chemistry and Physics, 2020, 20, 281-301.	4.9	6
54	Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements. Atmospheric Chemistry and Physics, 2021, 21, 13729-13746.	4.9	4

#	Article	IF	CITATIONS
55	A Model and Satelliteâ€Based Analysis of the Tropospheric Ozone Distribution in Clear Versus Convectively Cloudy Conditions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 11,948.	3.3	3
56	Tropospheric Ageâ€ofâ€Air: Influence of SF ₆ Emissions on Recent Surface Trends and Model Biases. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD035451.	3.3	3