Eduardo Augusto Caldas Batista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272960/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implementation of the moving control volume and filling front concepts in modelling solid-liquid extraction of vegetable oil from porous and non-porous solids in a fixed bed. Journal of Food Engineering, 2022, 334, 111154.	2.7	0
2	Thermal stability of glycerol containing compounds from the biodiesel production chain. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11857-11874.	2.0	1
3	Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization. Food Chemistry, 2021, 352, 129346.	4.2	82
4	Optimizing the production of biodiesel from palm olein (Elaeis guineensis Jacq.) using a strong basic anionic resin as a heterogeneous catalyst. Industrial Crops and Products, 2021, 174, 114121.	2.5	7
5	Oil extraction from semi-defatted babassu bagasse with ethanol: Liquid-liquid equilibrium and solid-liquid extraction in a single stage. Journal of Food Engineering, 2020, 276, 109845.	2.7	5
6	Integrated supercritical extraction and supercritical adsorption processes from passion fruit by-product: experimental and economic analyses. Journal of Supercritical Fluids, 2020, 162, 104856.	1.6	18
7	Phase Equilibrium of Fats and Monoterpenes and How It Affects Chocolate Quality. Journal of Chemical & Engineering Data, 2019, 64, 3231-3243.	1.0	4
8	Solid-liquid phase equilibrium diagrams of binary mixtures containing fatty acids, fatty alcohol compounds and tripalmitin using differential scanning calorimetry. Fluid Phase Equilibria, 2019, 497, 19-32.	1.4	8
9	Liquid–Liquid Equilibrium Data for Systems Involving Triacylglycerols from (Soybean, Cottonseed, or) Tj ETQq1 & Engineering Data, 2019, 64, 2153-2162.	l 0.78431 1.0	4 rgBT /Ove 4
10	Hansen solubility parameters and thermodynamic modeling for LLE description during glycerol-settling in ester production from coconut oil. Fuel, 2019, 241, 725-732.	3.4	4
11	A simplified and general approach to absorption and stripping with parallel streams. Separation and Purification Technology, 2018, 203, 93-110.	3.9	5
12	The employment of ethanol as solvent to extract Brazil nut oil. Journal of Cleaner Production, 2018, 180, 866-875.	4.6	28
13	Phase equilibrium and physical properties of biobased ionic liquid mixtures. Physical Chemistry Chemical Physics, 2018, 20, 6469-6479.	1.3	18
14	LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K. Brazilian Journal of Chemical Engineering, 2018, 35, 373-382.	0.7	3
15	Tunable Hydrophobic Eutectic Solvents Based on Terpenes and Monocarboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 8836-8846.	3.2	207
16	Liquid-liquid equilibrium during ethanolysis of soybean oil. Fluid Phase Equilibria, 2018, 473, 286-293.	1.4	9
17	Liquid-liquid equilibrium of systems containing trioleinÂ+ (fatty acid/ partial acylglycerols/ester)Â+ ethanol: Experimental data and UNIFAC modeling. Fluid Phase Equilibria, 2018, 476, 186-192.	1.4	8
18	A simplified and general approach to distillation with parallel streams: The cases of para- and metastillation. Separation and Purification Technology, 2017, 177, 313-326.	3.9	7

#	Article	IF	CITATIONS
19	Tocopherols and Tocotrienols: an Adapted Methodology by UHPLC/MS Without Sample Pretreatment Steps. Food Analytical Methods, 2017, 10, 2165-2174.	1.3	16
20	Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil. Journal of Food Engineering, 2017, 202, 99-113.	2.7	34
21	Kinetic of the formation of short-chain carboxylic acids during the induced oxidation of different lipid samples using ion chromatography. Fuel, 2017, 199, 239-247.	3.4	12
22	Measurement and PC-SAFT modeling of solid-liquid equilibrium of deep eutectic solvents of quaternary ammonium chlorides and carboxylic acids. Fluid Phase Equilibria, 2017, 448, 69-80.	1.4	88
23	Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals. Journal of Physical Chemistry B, 2017, 121, 3177-3189.	1.2	43
24	EXPERIMENTAL DATA, THERMODYNAMIC MODELING AND SENSITIVITY ANALYSES FOR THE PURIFICATION STEPS OF ETHYL BIODIESEL FROM FODDER RADISH OIL PRODUCTION. Brazilian Journal of Chemical Engineering, 2017, 34, 341-353.	0.7	4
25	A new UNIFAC parameterization for the prediction of liquid-liquid equilibrium of biodiesel systems. Fluid Phase Equilibria, 2016, 425, 98-107.	1.4	27
26	Binary solid–liquid equilibrium systems containing fatty acids, fatty alcohols and trilaurin by differential scanning calorimetry. Fluid Phase Equilibria, 2016, 423, 74-83.	1.4	20
27	Liquid–liquid equilibrium data for systems important in biodiesel production, involving vegetable oils + ethyl esters + monoacylglycerols and diacylglycerols + anhydrous ethanol, at 303.15 and 318.15 K. Fuel, 2016, 180, 332-342.	3.4	7
28	Applications of Ionic Liquids in the Food and Bioproducts Industries. ACS Sustainable Chemistry and Engineering, 2016, 4, 5347-5369.	3.2	170
29	LIQUID-LIQUID EQUILIBRIUM FOR TERNARY SYSTEMS CONTAINING ETHYLIC BIODIESEL + ANHYDROUS ETHANOL + REFINED VEGETABLE OIL (SUNFLOWER OIL, CANOLA OIL AND PALM OIL): EXPERIMENTAL DATA AND THERMODYNAMIC MODELING. Brazilian Journal of Chemical Engineering, 2015, 32, 699-706.	0.7	5
30	Liquid–Liquid Equilibrium Data for Fatty Systems Containing Monoacylglycerols and Diacylglycerols. Journal of Chemical & Engineering Data, 2015, 60, 2371-2379.	1.0	21
31	(Liquid+liquid) equilibrium of systems involved in the stepwise ethanolysis of vegetable oils. Journal of Chemical Thermodynamics, 2015, 89, 148-158.	1.0	18
32	Binary solid–liquid equilibrium systems containing fatty acids, fatty alcohols and triolein by differential scanning calorimetry. Fluid Phase Equilibria, 2015, 404, 1-8.	1.4	19
33	Liquid–liquid equilibrium of systems containing triacylglycerols (canola and corn oils), diacylglycerols, monoacylglycerols, fatty acids, ester and ethanol at T/K=303.15 and 318.15. Fluid Phase Equilibria, 2015, 404, 32-41.	1.4	23
34	Equilibrium, Kinetics, and Thermodynamics of Soybean Oil Deacidification Using a Strong Anion Exchange Resin. Industrial & Engineering Chemistry Research, 2015, 54, 11167-11179.	1.8	8
35	Liquid–liquid equilibrium data and thermodynamic modeling, at T/K=298.2, in the washing step of ethyl biodiesel production from crambe, fodder radish and macauba pulp oils. Fuel, 2014, 117, 590-597.	3.4	27
36	Deacidification of rice bran oil by liquid–liquid extraction using a renewable solvent. Separation and Purification Technology, 2014, 132, 84-92.	3.9	43

#	Article	IF	Citations
37	Vapor–Liquid Equilibrium of Mixtures Containing the Following Higher Alcohols: 2-Propanol, 2-Methyl-1-propanol, and 3-Methyl-1-butanol. Journal of Chemical & Engineering Data, 2014, 59, 659-665.	1.0	11
38	Low pressure vapor–liquid equilibria modeling of biodiesel related systems with the Cubic–Plus–Association (CPA) equation of state. Fuel, 2014, 133, 224-231.	3.4	11
39	Phase behaviour and thermodynamic modelling for the system (grape seed oil + carbon dioxide +) Tj ETQq1 1 0.	784314 rş 1.0	gBT_/Overlock
40	Dynamics of the recovery of aroma volatile compounds during the concentration of cashew apple juice (Anacardium occidentale L.). Food Research International, 2013, 51, 335-343.	2.9	13
41	LLE experimental data, thermodynamic modeling and sensitivity analysis in the ethyl biodiesel from macauba pulp oil settling step. Bioresource Technology, 2013, 131, 468-475.	4.8	36
42	Phase behavior and process parameters effect on grape seed extract encapsulation by SEDS technique. Industrial Crops and Products, 2013, 50, 352-360.	2.5	33
43	Performance and cost evaluation of a new double-effect integration of multicomponent bioethanol distillation. Energy, 2013, 63, 1-9.	4.5	23
44	Liquid–liquid equilibrium of fatty systems: A new approach for adjusting UNIFAC interaction parameters. Fluid Phase Equilibria, 2013, 360, 379-391.	1.4	29
45	Biodiesel Produced by Ethanolysis: Melting Profile, Densities, and Viscosities. Energy & Fuels, 2013, 27, 5907-5914.	2.5	9
46	Experimental data for liquid–liquid equilibrium of fatty systems with emphasis on the distribution of tocopherols and tocotrienols. Fluid Phase Equilibria, 2013, 338, 78-86.	1.4	17
47	Study of the Fusel Oil Distillation Process. Industrial & Engineering Chemistry Research, 2013, 52, 2336-2351.	1.8	77
48	Densities and Viscosities of Fatty Acid Ethyl Esters and Biodiesels Produced by Ethanolysis from Palm, Canola, and Soybean Oils: Experimental Data and Calculation Methodologies. Industrial & Engineering Chemistry Research, 2013, 52, 2985-2994.	1.8	18
49	Liquid–liquid equilibrium of pseudoternary systems containing glycerol+ethanol+ethylic biodiesel from crambe oil (Crambe abyssinica) at T/K=(298.2, 318.2, 338.2) and thermodynamic modeling. Fluid Phase Equilibria, 2012, 333, 55-62.	1.4	54
50	Liquid–liquid equilibria for ternary systems containing ethyl esters, ethanol and glycerol at 323.15 and 353.15K. Fuel, 2012, 94, 386-394.	3.4	45
51	Liquid–liquid equilibria for ethyl esters+ethanol+water systems: Experimental measurements and CPA EoS modeling. Fuel, 2012, 96, 327-334.	3.4	18
52	Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. Journal of Food Engineering, 2012, 109, 249-257.	2.7	166
53	Liquidâ~'Liquid Equilibrium Data for Systems Containing Palm Oil Fractions + Fatty Acids + Ethanol + Water. Journal of Chemical & Engineering Data, 2011, 56, 1892-1898.	1.0	18
54	Chemical characterization and phase behaviour of grape seed oil in compressed carbon dioxide and ethanol as co-solvent. Journal of Chemical Thermodynamics, 2010, 42, 797-801.	1.0	35

#	Article	IF	CITATIONS
55	Boiling point of aqueous d-glucose and d-fructose solutions: Experimental determination and modeling with group-contribution method. Fluid Phase Equilibria, 2010, 299, 32-41.	1.4	17
56	Densities, Viscosities, Interfacial Tensions, and Liquidâ^'Liquid Equilibrium Data for Systems Composed of Soybean Oil + Commercial Linoleic Acid + Ethanol + Water at 298.2 K. Journal of Chemical & Engineering Data, 2010, 55, 5237-5245.	1.0	14
57	Liquidâ°'Liquid Equilibrium Data for Systems Containing <i>Jatropha curcas</i> Oil + Oleic Acid + Anhydrous Ethanol + Water at (288.15 to 318.15) K. Journal of Chemical & Engineering Data, 2010, 55, 2416-2423.	1.0	18
58	Mutual Solubility for Systems Composed of Vegetable Oil + Ethanol + Water at Different Temperatures. Journal of Chemical & Engineering Data, 2010, 55, 440-447.	1.0	40
59	Mutual Solubility of Pseudobinary Systems Containing Vegetable Oils and Anhydrous Ethanol from (298.15 to 333.15) K. Journal of Chemical & Engineering Data, 2010, 55, 2750-2756.	1.0	31
60	Liquidâ~'Liquid Equilibrium for Ternary Systems Containing Ethyl Esters, Anhydrous Ethanol and Water at 298.15, 313.15, and 333.15 K. Industrial & Engineering Chemistry Research, 2010, 49, 12613-12619.	1.8	33
61	Liquidâ~'Liquid Equilibrium Data for Systems Containing Vegetable Oils, Anhydrous Ethanol, and Hexane at (313.15, 318.15, and 328.15) K. Journal of Chemical & Engineering Data, 2009, 54, 1850-1859.	1.0	26
62	Liquidâ~'Liquid Equilibrium Data for Systems Containing Refined Rice Bran Oil, Anhydrous Ethanol, Water, and Hexane. Journal of Chemical & Engineering Data, 2009, 54, 2182-2188.	1.0	7
63	Liquidâ^'Liquid Equilibrium Data for Fatty Systems Containing Refined Rice Bran Oil, Oleic Acid, Anhydrous Ethanol, and Hexane. Journal of Chemical & Engineering Data, 2009, 54, 2174-2181.	1.0	6
64	Liquid–Liquid Equilibrium Data for Reactional Systems of Ethanolysis at 298.3 K. Journal of Chemical & Engineering Data, 2008, 53, 5-15.	1.0	47
65	Densities and Viscosities of Vegetable Oils of Nutritional Value. Journal of Chemical & Engineering Data, 2008, 53, 1846-1853.	1.0	52
66	Group Contribution Model for Predicting Viscosity of Fatty Compounds. Journal of Chemical & Engineering Data, 2007, 52, 965-972.	1.0	81
67	Liquidâ^'Liquid Equilibrium Data for the System Corn Oil + Oleic Acid + Ethanol + Water at 298.15 K. Journal of Chemical & Engineering Data, 2002, 47, 416-420.	1.0	65
68	Liquidâ~'Liquid Equilibrium of the Water + Citric Acid + Short Chain Alcohol + Tricaprylin System at 298.15 K. Journal of Chemical & Engineering Data, 2001, 46, 546-550.	1.0	19
69	Viscosity prediction for fatty systems. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 1255-1262.	0.8	65
70	Liquidâ^'Liquid Equilibrium of the Water + Citric Acid + 2-Butanol + Sodium Chloride System at 298.15 K. Journal of Chemical & Engineering Data, 2000, 45, 1211-1214.	1.0	24
71	Recovery of aroma compounds from orange essential oil. Brazilian Journal of Chemical Engineering, 2000, 17, 705-712.	0.7	29
72	Liquidâ^'Liquid Equilibrium for Systems of Canola Oil, Oleic Acid, and Short-Chain Alcohols. Journal of Chemical & Engineering Data, 1999, 44, 1360-1364.	1.0	105

#	Article	IF	CITATIONS
73	Prediction of Liquidâ^'Liquid Equilibrium for Systems of Vegetable Oils, Fatty Acids, and Ethanol. Journal of Chemical & Engineering Data, 1999, 44, 1365-1369.	1.0	44
74	Optimization of a secondary reflux and vaporization (SRV) distillation process using surface response analysis. Computers and Chemical Engineering, 1998, 22, S737-S740.	2.0	11
75	Simulation and Thermal Integration SRV in Extractive Distillation Column Journal of Chemical Engineering of Japan, 1997, 30, 45-51.	0.3	17
76	Extração de compostos fenólicos da folha de oliveira (Olea europaea L.) com o uso de deep eutectic solvents (DES). , 0, , .		0
77	Solid–liquid phase equilibrium diagrams of binary mixtures containing fatty acids, fatty alcohol compounds, and tristearin. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	0