
Ilze Lihacova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272858/publications.pdf Version: 2024-02-01

LIZE LIHACOVA

#	Article	IF	CITATIONS
1	Multispectral Imaging Algorithm Predicts Breslow Thickness of Melanoma. Journal of Clinical Medicine, 2022, 11, 189.	2.4	4
2	Multi-Class CNN for Classification of Multispectral and Autofluorescence Skin Lesion Clinical Images. Journal of Clinical Medicine, 2022, 11, 2833.	2.4	9
3	Autofluorescence Imaging of the Skin Is an Objective Non-Invasive Technique for Diagnosing Pseudoxanthoma Elasticum. Diagnostics, 2021, 11, 260.	2.6	8
4	Laser speckle imaging for early detection of microbial colony forming units. Biomedical Optics Express, 2021, 12, 1609.	2.9	10
5	Visualization of Keratin with Diffuse Reflectance and Autofluorescence Imaging and Nonlinear Optical Microscopy in a Rare Keratinopathic Ichthyosis. Sensors, 2021, 21, 1105.	3.8	8
6	Quantitative Multispectral Imaging Differentiates Melanoma from Seborrheic Keratosis. Diagnostics, 2021, 11, 1315.	2.6	10
7	Laser speckle imaging reveals bacterial activity within colony. , 2021, , .		3
8	Challenges of automatic processing of large amount of skin lesion multispectral data. , 2020, , .		2
9	Identification of the most informative wavelengths for non-invasive melanoma diagnostics in spectral region from 450 to 950 nm. , 2020, , .		1
10	Skin cancer screening – better safe than sorry. SHS Web of Conferences, 2020, 85, 02003.	0.2	2
11	Embedded neural network system for microorganisms growth analysis. , 2020, , .		1
12	Biophotonics research in Riga: recent projects and results. , 2020, , .		0
13	Deep learning model deploying on embedded skin cancer diagnostic device. , 2020, , .		0
14	Multispectral and autofluorescence RGB imaging for skin cancer diagnostics. , 2019, , .		2
15	Towards to deep neural network application with limited training data: synthesis of melanoma's diffuse reflectance spectral images. , 2019, , .		0
16	Imaging of LED-excited autofluorescence photobleaching rates for skin diagnostics. , 2019, , .		0
17	Combined multi-wavelength laser speckle contrast imaging and diffuse reflectance imaging for skin perfusion assessment. , 2019, , .		1
18	Differentiation of seborrheic keratosis from basal cell carcinoma, nevi and melanoma by RGB autofluorescence imaging. Biomedical Optics Express, 2018, 9, 1852.	2.9	27

Ilze Lihacova

#	ARTICLE	IF	CITATIONS
19	Evaluating the Aging of the Scars After Cancer Removal by Using Multispectral Diagnostic Device. , 2018, , .		1
20	A method for skin malformation classification by combining multispectral and skin autofluorescence imaging. , 2018, , .		2
21	Optical design improvement for noncontact skin cancer diagnostic device. , 2018, , .		0
22	Quality enhancement of multispectral images for skin cancer optical diagnostics. , 2018, , .		3
23	Evaluation of skin pathologies by RGB autofluorescence imaging. , 2017, , .		0
24	Semi-automated non-invasive diagnostics method for melanoma differentiation from nevi and pigmented basal cell carcinomas. , 2017, , .		3
25	Monitoring soft tissue coagulation by optical spectroscopy. , 2017, , .		0
26	Autofluorescence imaging of basal cell carcinoma by smartphone RGB camera. Journal of Biomedical Optics, 2015, 20, 120502.	2.6	32
27	A multispectral imaging approach for diagnostics of skin pathologies. Proceedings of SPIE, 2013, , .	0.8	5
28	Application of principal component analysis to multispectral imaging data for evaluation of pigmented skin lesions. , 2013, , .		1
29	Skin chromphore mapping by means of a modified video-microscope for skin malformation diagnosis. Proceedings of SPIE, 2013, , .	0.8	3