Miguel Brandão

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272453/publications.pdf

Version: 2024-02-01

66 papers 3,591 citations

32 h-index 54 g-index

74 all docs

74 docs citations

74 times ranked 3805 citing authors

#	Article	lF	Citations
1	Consequential Life Cycle Assessment: What, Why and How?., 2022,,.		O
2	Indirect Effects Negate Global Climate Change Mitigation Potential of Substituting Gasoline With Corn Ethanol as a Transportation Fuel in the USA. Frontiers in Climate, 2022, 4, .	2.8	0
3	Definition of Product System and Solving Multifunctionality in ISO 14040–14044: Inconsistencies and Proposed Amendments—Toward a More Open and General LCA Framework. Frontiers in Sustainability, 2022, 3, .	2.6	10
4	Land use for bioenergy: Synergies and trade-offs between sustainable development goals. Renewable and Sustainable Energy Reviews, 2022, 161, 112409.	16.4	38
5	Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil. Journal of Cleaner Production, 2022, 364, 132549.	9.3	14
6	Consequential Life Cycle Framework and Methodology for the Integrated Sustainability Impact Assessment of Land-Use Systems. SpringerBriefs in Environmental Science, 2021, , 55-108.	0.3	0
7	Food, Feed, Fuel, Timber or Carbon Sink? Towards Sustainable Land Use. SpringerBriefs in Environmental Science, 2021, , .	0.3	4
8	Evaluating the environmental profiles of winter wheat rotation systems under different management strategies. Science of the Total Environment, 2021, 770, 145270.	8.0	22
9	Applying a scienceâ€based systems perspective to dispel misconceptions about climate effects of forest bioenergy. GCB Bioenergy, 2021, 13, 1210-1231.	5.6	49
10	Editorial: Developing and Deploying Negative Emission Technologies: System-Level Assessment and Rationalization. Frontiers in Climate, $2021, 3, .$	2.8	2
11	The modelling approach determines the carbon footprint of biofuels: The role of LCA in informing decision makers in government and industry. Cleaner Environmental Systems, 2021, 2, 100027.	4.2	17
12	System Expansion and Substitution in LCA: A Lost Opportunity of ISO 14044 Amendment 2. Frontiers in Sustainability, $2021, 2, .$	2.6	22
13	Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions. Sustainability, 2021, 13, 7386.	3.2	59
14	Sustainability of Land Use: A Systems Approach. SpringerBriefs in Environmental Science, 2021, , 15-53.	0.3	0
15	Response: Commentary: System Expansion and Substitution in LCA: A Lost Opportunity of ISO 14044 Amendment 2. Frontiers in Sustainability, 2021, 2, .	2.6	2
16	Environmental impacts and limitations of thirdâ€generation biobutanol: Life cycle assessment of n â€butanol produced by genetically engineered cyanobacteria. Journal of Industrial Ecology, 2020, 24, 205-216.	5.5	35
17	Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. International Journal of Life Cycle Assessment, 2020, 25, 620-632.	4.7	13
18	Book Review of <i>Life Cycle Assessment: Theory and Practice ⟨/i⟩, edited by Michael Z. Hauschild, Ralph K. Rosenbaum, and Stig Irving Olsen; ⟨i⟩ Environmental Life Cycle Assessment ⟨/i⟩, by Olivier Jolliet, Myriam Saadéâ€Sbeih, Shanna Shaked, Alexandre Jolliet, and Pierre Crettaz; and ⟨i⟩ Life Cycle Assessment: Quantitative Approaches for Decisions That Matter ⟨/i⟩, by H. Scott Matthews, Chris T. Hendrickson, and Deanna H. Matthews. Journal of Industrial Ecology, 2020, 24, 726-730.</i>	5.5	2

#	Article	IF	Citations
19	Straw wars $\hat{a} \in \hat{a}$ a consequential saga: the life cycle climate change consequences of replacing plastic with paper. , 2020, , .		2
20	Integrated sustainability assessment of a circular economy. , 2020, , .		1
21	Do bioenergy, bioeconomy and circular economy systems mitigate climate change? Insights from life cycle assessment. , 2020, , .		2
22	Modelling material recycling in life cycle assessment: how sensitive are results to the available methods?. , 2020, , .		1
23	The circular economy: a strategy to reconcile economic and environmental objectives?., 2020,,.		2
24	Prospects for the circular economy and conclusions. , 2020, , .		5
25	Environmental footprint family to address local to planetary sustainability and deliver on the SDGs. Science of the Total Environment, 2019, 693, 133642.	8.0	245
26	Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies. Renewable and Sustainable Energy Reviews, 2019, 106, 133-148.	16.4	22
27	Interpreting life cycle assessment results for integrated sustainability decision support: can an ecological economic perspective help us to connect the dots?. International Journal of Life Cycle Assessment, 2019, 24, 1580-1586.	4.7	14
28	Life cycle assessment of recirculating aquaculture systems: A case of Atlantic salmon farming in China. Journal of Industrial Ecology, 2019, 23, 1077-1086.	5.5	34
29	Quantifying the climate effects of forest-based bioenergy. , 2019, , 399-418.		9
30	Quantifying the climate change effects of bioenergy systems: Comparison of 15 impact assessment methods. GCB Bioenergy, 2019, 11, 727-743.	5.6	43
31	Life cycle assessment methodology for agriculture: some considerations for best practices. Burleigh Dodds Series in Agricultural Science, 2019, , 3-48.	0.2	1
32	Quantifying the climate effects of bioenergy – Choice of reference system. Renewable and Sustainable Energy Reviews, 2018, 81, 2271-2280.	16.4	54
33	A flexible parametric model for a balanced account of forest carbon fluxes in LCA. International Journal of Life Cycle Assessment, 2017, 22, 172-184.	4.7	24
34	Hybrid life cycle assessment (LCA) does not necessarily yield more accurate results than process-based LCA. Journal of Cleaner Production, 2017, 150, 237-242.	9.3	72
35	Status and prospects for renewable energy using wood pellets from the southeastern United States. GCB Bioenergy, 2017, 9, 1296-1305.	5.6	52
36	Climate-change and health effects of using rice husk for biochar-compost: Comparing three pyrolysis systems. Journal of Cleaner Production, 2017, 162, 260-272.	9.3	47

#	Article	IF	Citations
37	Estimating 20â€year landâ€use change and derived <scp>CO</scp> ₂ emissions associated with crops, pasture and forestry in Brazil and each of its 27 states. Global Change Biology, 2017, 23, 3716-3728.	9.5	46
38	Evaluating the Environmental Consequences of Swedish Food Consumption and Dietary Choices. Sustainability, 2017, 9, 2227.	3.2	36
39	Consequential Life Cycle Assessment: What, How, and Why?. , 2017, , 277-284.		27
40	Exergy as a Measure of Resource Use in Life Cycle Assessment and Other Sustainability Assessment Tools. Resources, 2016, 5, 23.	3.5	31
41	Quantifying the Greenhouse Gas Reduction Benefits of Utilising Straw Biochar and Enriched Biochar. Energy Procedia, 2016, 97, 254-261.	1.8	26
42	Policy institutions and forest carbon. Nature Climate Change, 2016, 6, 805-805.	18.8	1
43	On the validity of natural regeneration in determination of land-use baseline. International Journal of Life Cycle Assessment, 2016, 21, 448-450.	4.7	7
44	Biochar use for climate-change mitigation in rice cropping systems. Journal of Cleaner Production, 2016, 116, 61-70.	9.3	73
45	Rebuttal to †Indirect land use change (<scp>iLUC</scp>) within life cycle assessment (LCA) – scientific robustness and consistency with international standards'. GCB Bioenergy, 2015, 7, 565-566.	5.6	19
46	Rationales for and limitations of preferred solutions for multi-functionality problems in LCA: is increased consistency possible?. International Journal of Life Cycle Assessment, 2015, 20, 74-86.	4.7	108
47	A framework for modelling indirect land use changes in Life Cycle Assessment. Journal of Cleaner Production, 2015, 99, 230-238.	9.3	140
48	Attributional life cycle assessment: is a land-use baseline necessary?. International Journal of Life Cycle Assessment, 2015, 20, 1364-1375.	4.7	53
49	Monetary valuation in Life Cycle Assessment: a review. Journal of Cleaner Production, 2015, 86, 170-179.	9.3	182
50	The Use of Life Cycle Assessment in the Support of Robust (Climate) Policy Making: Comment on "Using Attributional Life Cycle Assessment to Estimate Climateâ€Change Mitigation …― Journal of Industrial Ecology, 2014, 18, 461-463.	5.5	57
51	Assessing resource depletion in LCA: a review of methods and methodological issues. International Journal of Life Cycle Assessment, 2014, 19, 580-592.	4.7	164
52	UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. International Journal of Life Cycle Assessment, 2013, 18, 1188-1202.	4.7	275
53	Principles for life cycle inventories of land use on a global scale. International Journal of Life Cycle Assessment, 2013, 18, 1203-1215.	4.7	111
54	Global characterisation factors to assess land use impacts on biotic production. International Journal of Life Cycle Assessment, 2013, 18, 1243-1252.	4.7	116

#	Article	IF	CITATIONS
55	Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. International Journal of Life Cycle Assessment, 2013, 18, 230-240.	4.7	257
56	Valuing temporary carbon storage. Nature Climate Change, 2012, 2, 6-8.	18.8	70
57	Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Climatic Change, 2012, 115, 759-776.	3.6	68
58	A Review of the Environmental Impacts of Biobased Materials. Journal of Industrial Ecology, 2012, 16, S169.	5.5	233
59	What Can Metaâ€Analyses Tell Us About the Reliability of Life Cycle Assessment for Decision Support?. Journal of Industrial Ecology, 2012, 16, S3.	5.5	41
60	Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass and Bioenergy, 2011, 35, 2323-2336.	5.7	186
61	Soil Processes and Functions in Critical Zone Observatories: Hypotheses and Experimental Design. Vadose Zone Journal, 2011, 10, 974-987.	2.2	81
62	Using Life Cycle Assessment to Evaluate the Environmental Performance of Bio-Based Materials. , 2011, , 189-210.		0
63	Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. International Journal of Life Cycle Assessment, 2010, 15, 172-182.	4.7	127
64	A Life-Cycle Approach to Characterising Environmental and Economic Impacts of Multifunctional Land-Use Systems: An Integrated Assessment in the UK. Sustainability, 2010, 2, 3747-3776.	3.2	38
65	Expert Workshop on Land Use Impacts in Life Cycle Assessment. 12–13 June 2006 Guildford, Surrey (UK). International Journal of Life Cycle Assessment, 2006, 11, 363-368.	4.7	35
66	Life Cycle Impact Assessment: Research Needs and Challenges from Science to Policy Making. , 0, , .		1