

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Analysis of clinical characteristics and prognosis of talaromycosis (with or without human) Tj ETQq1 1 0.7843	14 rgBT /Ov	erlock 10 Tf
2	Metagenomic sequencing with spiked-in internal control to monitor cellularity and diagnosis of pneumonia. Journal of Infection, 2022, 84, e13-e17.	1.7	11
3	Raman Nanotagsâ€Guided Intraoperative Sentinel Lymph Nodes Precise Location with Minimal Invasion. Advanced Science, 2022, 9, e2102405.	5.6	15
4	Human metabolite detection by surface-enhanced Raman spectroscopy. Materials Today Bio, 2022, 13, 100205.	2.6	20
5	Multifunctional theranostic nanoparticles for multi-modal imaging-guided CAR-T immunotherapy and chemo-photothermal combinational therapy of non-Hodgkin's lymphoma. Biomaterials Science, 2022, 10, 2577-2589.	2.6	10
6	Surface-Enhanced Raman Scattering Bioimaging with an Ultrahigh Signal-to-Background Ratio under Ambient Light. ACS Applied Materials & Interfaces, 2022, 14, 8876-8887.	4.0	12
7	Orthogonal gap-enhanced Raman tags for interference-free and ultrastable surface-enhanced Raman scattering. Nanophotonics, 2022, 11, 1549-1560.	2.9	10
8	Accurate Tumor Subtype Detection with Raman Spectroscopy via Variational Autoencoder and Machine Learning. ACS Omega, 2022, 7, 10458-10468.	1.6	21
9	Five-dimensional unclonable anticounterfeiting orthogonal Raman labels. Journal of Materials Chemistry C, 2022, 10, 7273-7282.	2.7	15
10	Raman-Guided Bronchoscopy: Feasibility and Detection Depth Studies Using Ex Vivo Lung Tissues and SERS Nanoparticle Tags. Photonics, 2022, 9, 429.	0.9	6
11	Boosting the Brightness of Thiolated Surface-Enhanced Raman Scattering Nanoprobes by Maximal Utilization of the Three-Dimensional Volume of Electromagnetic Fields. Journal of Physical Chemistry Letters, 2022, 13, 6496-6502.	2.1	6
12	Atomic Insights into the Evolution of Three-Dimensional Molecular Junctions in Plasmonic Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 1865-1873.	1.5	6
13	Raman Ink for Steganography. Advanced Optical Materials, 2021, 9, 2002038.	3.6	14
14	Shape Transformation Mechanism of Gallium–Indium Alloyed Liquid Metal Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2001874.	1.9	27
15	Optical penetration of surface-enhanced micro-scale spatial offset Raman spectroscopy in turbid gel and biological tissue. Journal of Innovative Optical Health Sciences, 2021, 14, .	0.5	17
16	Precisely Encoded Barcodes through the Structureâ€Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities. Small, 2021, 17, e2100315.	5.2	13
17	Surface-enhanced Raman scattering nanotags for bioimaging. Journal of Applied Physics, 2021, 129, .	1.1	35
18	Raman optical identification of renal cell carcinoma via machine learning. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119520.	2.0	22

#	Article	IF	CITATIONS
19	Multiplexed Detection: Precisely Encoded Barcodes through the Structureâ€Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities (Small 19/2021). Small, 2021, 17, 2170090.	5.2	0
20	Probing electron transport in plasmonic molecular junctions with two-photon luminescence spectroscopy. Nanophotonics, 2021, 10, 2467-2479.	2.9	3
21	Introduction to the special issue on surface-enhanced Raman spectroscopy and functionalized plasmonic nanoparticles for biomedical applications. Journal of Innovative Optical Health Sciences, 2021, 14, .	0.5	1
22	Ratiometric Raman nanotags enable intraoperative detection of metastatic sentinel lymph node. Biomaterials, 2021, 276, 121070.	5.7	12
23	Spontaneous Raman and Surface-Enhanced Raman Scattering Bioimaging. Advances in Experimental Medicine and Biology, 2021, 3233, 177-195.	0.8	6
24	Silver nanocubes-based bimetallic core-shell surface-enhanced Raman scattering nanoprobes for cell imaging. , 2021, , .		0
25	Protective Effect of Fasudil on Hydrogen Peroxide-Induced Oxidative Stress Injury of H9C2 Cardiomyocytes. Disease Markers, 2021, 2021, 1-9.	0.6	5
26	Gap-enhanced resonance Raman tags for live-cell imaging. Journal of Materials Chemistry B, 2020, 8, 6944-6955.	2.9	24
27	Ag-Coated Au Nanopetals: Dual-Type Single-Nanoparticle Detection of Gap-Enhanced Resonance Raman Tags. ACS Applied Nano Materials, 2020, 3, 6987-6995.	2.4	10
28	Gap-enhanced Raman tags: fabrication, optical properties, and theranostic applications. Theranostics, 2020, 10, 2067-2094.	4.6	85
29	Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels. Nature Communications, 2020, 11, 516.	5.8	130
30	Multifunctional gap-enhanced Raman tags for preoperative and intraoperative cancer imaging. Acta Biomaterialia, 2020, 104, 210-220.	4.1	27
31	Performance Study of Microsieves with Different Pore Geometries Based on Magnetic Cell Centrifuge Platform. , 2019, , .		1
32	Plasmonic nanoparticle simulations and inverse design using machine learning. Nanoscale, 2019, 11, 17444-17459.	2.8	79
33	Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nature Communications, 2019, 10, 3905.	5.8	140
34	Design of plasmonic nanomaterials for diagnostic spectrometry. Nanoscale Advances, 2019, 1, 459-469.	2.2	48
35	Sub-100â€ ⁻ nm multi-shell bimetallic gap-enhanced Raman tags. Applied Surface Science, 2019, 487, 1058-1067.	3.1	27
36	Improvement of surface-enhanced Raman scattering detection and imaging by multivariate curve resolution methods. Journal of Applied Physics, 2019, 125, .	1.1	10

#	Article	IF	CITATIONS
37	Enhancement of Nonlinear Optical Scattering by Gold Nanoparticles through Aggregationâ€Induced Plasmon Coupling in the Nearâ€Infrared. ChemPhysChem, 2019, 20, 1765-1774.	1.0	5
38	Nanotriangle-based gap-enhanced Raman tags for bioimaging and photothermal therapy. Journal of Applied Physics, 2019, 125, .	1.1	15
39	Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts. Nano Letters, 2019, 19, 1371-1378.	4.5	74
40	Facilitate charge transfer at donor/acceptor interface in bulk heterojunction organic photovoltaics by two-dimensional nanoflakes. Solar Energy Materials and Solar Cells, 2019, 190, 75-82.	3.0	14
41	Raman photostability of off-resonant gap-enhanced Raman tags. RSC Advances, 2018, 8, 14434-14444.	1.7	29
42	Gap-enhanced Raman tags for high-contrast sentinel lymph node imaging. Biomaterials, 2018, 163, 105-115.	5.7	56
43	Charge Transfer Doping Modulated Raman Scattering and Enhanced Stability of Black Phosphorus Quantum Dots on a ZnO Nanorod. Advanced Optical Materials, 2018, 6, 1800440.	3.6	34
44	Intraoperative Ramanâ€Guided Chemoâ€Photothermal Synergistic Therapy of Advanced Disseminated Ovarian Cancers. Small, 2018, 14, e1801022.	5.2	47
45	Intraoperative Detection and Eradication of Residual Microtumors with Gap-Enhanced Raman Tags. ACS Nano, 2018, 12, 7974-7985.	7.3	85
46	Plasmonic Janus hybrids for the detection of small metabolites. Journal of Materials Chemistry B, 2018, 6, 7280-7287.	2.9	40
47	Surfaceâ€Enhanced Raman Nanoprobes with Embedded Standards for Quantitative Cholesterol Detection. Small Methods, 2018, 2, 1800182.	4.6	55
48	Electron Transport Across Plasmonic Molecular Nanogaps Interrogated with Surface-Enhanced Raman Scattering. ACS Nano, 2018, 12, 6492-6503.	7.3	77
49	Quantifying the reflective index of nanometer-thick thiolated molecular layers on nanoparticles. Nanoscale, 2017, 9, 2213-2218.	2.8	25
50	Ultraphotostable Mesoporous Silica-Coated Gap-Enhanced Raman Tags (GERTs) for High-Speed Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 3995-4005.	4.0	75
51	Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Analytica Chimica Acta, 2017, 950, 147-155.	2.6	62
52	Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30387-30397.	4.0	63
53	Plasmon coupling of magnetic resonances in an asymmetric gold semishell. Journal Physics D: Applied Physics, 2016, 49, 205106.	1.3	6
54	Improving SERS uniformity by isolating hot spots in gold rod-in-shell nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	14

#	Article	IF	CITATIONS
55	Sensitive SERS measurement with a single nanoshell-plane junction under radially polarized focused excitation. , 2016, , .		Ο
56	Highly controllable double Fano resonances in plasmonic metasurfaces. Nanoscale, 2016, 8, 17665-17674.	2.8	36
57	Strong plasmon coupling in self-assembled superparamagnetic nanoshell chains. Nanoscale, 2016, 8, 4991-4999.	2.8	15
58	Identification and distinction of non-small-cell lung cancer cells by intracellular SERS nanoprobes. RSC Advances, 2016, 6, 5401-5407.	1.7	26
59	Revisiting the Surface Sensitivity of Nanoplasmonic Biosensors. ACS Photonics, 2015, 2, 425-431.	3.2	83
60	Nanooptics of Plasmonic Nanomatryoshkas: Shrinking the Size of a Core–Shell Junction to Subnanometer. Nano Letters, 2015, 15, 6419-6428.	4.5	119
61	Plasmonic multi-shell nanomatryoshka particles as highly tunable SERS tags with built-in reporters. Chemical Communications, 2015, 51, 17740-17743.	2.2	88
62	Au@Ag core/shell cuboids and dumbbells: Optical properties and SERS response. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 167, 64-75.	1.1	57
63	Superparamagnetic plasmonic nanoshells for improved imaging, separation and seeding of co-cultured cells. Journal of Materials Chemistry B, 2015, 3, 7787-7795.	2.9	4
64	Biosensing Using Diffractively Coupled Plasmonic Crystals: the Figure of Merit Revisited. Advanced Optical Materials, 2015, 3, 176-181.	3.6	52
65	Reproducibility in surface-enhanced Raman spectroscopy. Journal of Shanghai Jiaotong University (Science), 2014, 19, 681-690.	0.5	25
66	Preparation of non-spherical particles by shell-shield etching for near-field nanopatterning. Nanotechnology, 2014, 25, 275303.	1.3	1
67	Overgrowth of Gold Nanorods by Using a Binary Surfactant Mixture. Langmuir, 2014, 30, 1696-1703.	1.6	93
68	Au nanoparticles on ultrathin MoS ₂ sheets for plasmonic organic solar cells. Journal of Materials Chemistry A, 2014, 2, 14798-14806.	5.2	110
69	Multifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation. Nanoscale, 2014, 6, 14360-14370.	2.8	29
70	Plasmonic rod-in-shell nanoparticles for photothermal therapy. Physical Chemistry Chemical Physics, 2014, 16, 12275-12281.	1.3	19
71	Optical Properties of Metallic Semishells: Breaking the Symmetry of Plasmonic Nanoshells. , 2013, , 75-98.		0
72	Detection of DNA Bases and Oligonucleotides in Plasmonic Nanoslits Using Fluidic SERS. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 4600707-4600707.	1.9	12

#	Article	IF	CITATIONS
73	Gold nanoring as a sensitive plasmonic biosensor for on-chip DNA detection. Applied Physics Letters, 2012, 100, .	1.5	155
74	Ultralocal Modification of Surface Plasmons Properties in Silver Nanocubes. Nano Letters, 2012, 12, 1288-1294.	4.5	99
75	Plasmon Transmutation: Inducing New Modes in Nanoclusters by Adding Dielectric Nanoparticles. Nano Letters, 2012, 12, 5020-5026.	4.5	73
76	Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap. Nanoscale, 2012, 4, 7205.	2.8	37
77	Plasmonic Nanoclusters: Near Field Properties of the Fano Resonance Interrogated with SERS. Nano Letters, 2012, 12, 1660-1667.	4.5	442
78	Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Nanoscale, 2012, 4, 1606.	2.8	117
79	A versatile method to fabricate particle-in-cavity plasmonic nanostructures. Journal of Materials Chemistry, 2011, 21, 14394.	6.7	10
80	Semishells: Versatile Plasmonic Nanoparticles. ACS Nano, 2011, 5, 6774-6778.	7.3	57
81	Improvement of Figure of Merit for Gold Nanobar Array Plasmonic Sensors. Plasmonics, 2011, 6, 665-671.	1.8	58
82	Temperature Determination of Resonantly Excited Plasmonic Branched Gold Nanoparticles by Xâ€ray Absorption Spectroscopy. Small, 2011, 7, 2498-2506.	5.2	25
83	Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Applied Physics Letters, 2010, 97, .	1.5	81
84	Plasmonic Modes of Metallic Semishells in a Polymer Film. ACS Nano, 2010, 4, 1457-1464.	7.3	66
85	Strong location dependent surface enhanced Raman scattering on individual gold semishell and nanobowl particles. Physical Chemistry Chemical Physics, 2010, 12, 11222.	1.3	41
86	Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures. Nanotechnology, 2009, 20, 465203.	1.3	67
87	Symmetry breaking induced optical properties of gold open shell nanostructures. Optics Express, 2009, 17, 23765.	1.7	75
88	Fabrication and Optical Properties of Gold Semishells. Journal of Physical Chemistry C, 2009, 113, 3110-3115.	1.5	77
89	Fabrication, Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures. Langmuir, 2009, 25, 1822-1827.	1.6	93
90	Enhanced localized surface plasmon resonance sensing on three-dimensional gold nanoparticles assemblies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 313-317.	2.3	62

#	Article	IF	CITATIONS
91	Surface morphology changes on silica-coated gold colloids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 225-233.	2.3	43
92	Coupled plasmon resonances in monolayers of metal nanoparticles and nanoshells. Physical Review B, 2008, 77, .	1.1	74
93	The fabrication and optical property of silver nanoplates with different thicknesses. Nanotechnology, 2008, 19, 325702.	1.3	35
94	Title is missing!. Journal of Materials Science, 2003, 38, 4021-4025.	1.7	10
95	Synergism in photosensitivity for a single-layered photoreceptor comprising crystalline mixture of metal-free phthalocyanine with chloroindium phthalocyanine. Materials Chemistry and Physics, 2003, 77, 773-777.	2.0	5
96	Enhanced photoconductivity in organic single-layered photoreceptors with bipolar charge transport materials. Materials Chemistry and Physics, 2003, 82, 210-215.	2.0	5
97	Excellent ambipolar photoconductivity of PVK film doped with fluoroperylene diimide. Chemical Physics Letters, 2003, 381, 666-671.	1.2	23
98	Fluoroperylene diimide: a soluble and air-stable electron acceptor. Chemical Communications, 2003, , 1710.	2.2	49
99	Recent development of organic electron transport materials*. Progress in Natural Science: Materials International, 2003, 13, 81-87.	1.8	5