Salvatore Spicuglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272362/publications.pdf Version: 2024-02-01

SALVATORE SPICILCUA

#	Article	IF	CITATIONS
1	The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery. Cell, 2016, 167, 1145-1149.	13.5	404
2	BLUEPRINT to decode the epigenetic signature written in blood. Nature Biotechnology, 2012, 30, 224-226.	9.4	323
3	Transcription initiation platforms and CTF recruitment at tissue-specific enhancers and promoters. Nature Structural and Molecular Biology, 2011, 18, 956-963.	3.6	296
4	H3K4 tri-methylation provides an epigenetic signature of active enhancers. EMBO Journal, 2011, 30, 4198-4210.	3.5	265
5	Genome-wide characterization of mammalian promoters with distal enhancer functions. Nature Genetics, 2017, 49, 1073-1081.	9.4	222
6	CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Research, 2012, 22, 2399-2408.	2.4	197
7	Chromatin Remodeling by the T Cell Receptor (Tcr)-Î ² Gene Enhancer during Early T Cell Development. Journal of Experimental Medicine, 2000, 192, 625-636.	4.2	153
8	High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nature Communications, 2015, 6, 6905.	5.8	138
9	Early Response–Based Therapy Stratification Improves Survival in Adult Early Thymic Precursor Acute Lymphoblastic Leukemia: A Group for Research on Adult Acute Lymphoblastic Leukemia Study. Journal of Clinical Oncology, 2017, 35, 2683-2691.	0.8	134
10	A unique H3K4me2 profile marks tissue-specific gene regulation. Genome Research, 2010, 20, 1493-1502.	2.4	117
11	Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape. Nucleic Acids Research, 2015, 43, e27-e27.	6.5	113
12	Characterization of Lysine 56 of Histone H3 as an Acetylation Site in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2005, 280, 25949-25952.	1.6	105
13	Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics, 2013, 14, 914.	1.2	95
14	Promoter Activation by Enhancer-Dependent and -Independent Loading of Activator and Coactivator Complexes. Molecular Cell, 2002, 10, 1479-1487.	4.5	82
15	TLX Homeodomain Oncogenes Mediate T Cell Maturation Arrest in T-ALL via Interaction with ETS1 and Suppression of TCRα Gene Expression. Cancer Cell, 2012, 21, 563-576.	7.7	81
16	Chromatin signatures of active enhancers. Nucleus, 2012, 3, 126-131.	0.6	70
17	Uncleaved TFIIA Is a Substrate for Taspase 1 and Active in Transcription. Molecular and Cellular Biology, 2006, 26, 2728-2735.	1.1	67
18	CD8 + T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Reports, 2016, 17, 2151-2160.	2.9	64

SALVATORE SPICUGLIA

#	Article	IF	CITATIONS
19	Widespread Enhancer Activity from Core Promoters. Trends in Biochemical Sciences, 2018, 43, 452-468.	3.7	54
20	Candidate Luminal B Breast Cancer Genes Identified by Genome, Gene Expression and DNA Methylation Profiling. PLoS ONE, 2014, 9, e81843.	1.1	53
21	An early thymic precursor phenotype predicts outcome exclusively in HOXA-overexpressing adult T-cell acute lymphoblastic leukemia: a Group for Research in Adult Acute Lymphoblastic Leukemia study. Haematologica, 2016, 101, 732-740.	1.7	53
22	Active STAT5 Regulates T-bet and Eomesodermin Expression in CD8 T Cells and Imprints a T-bet–Dependent Tc1 Program with Repressed IL-6/TGF-β1 Signaling. Journal of Immunology, 2013, 191, 3712-3724.	0.4	49
23	Recent advances in high-throughput approaches to dissect enhancer function. F1000Research, 2017, 6, 939.	0.8	44
24	Transcriptional regulation by promoters with enhancer function. Transcription, 2018, 9, 307-314.	1.7	43
25	Definition of a T-Cell Receptor Î ² Gene Core Enhancer of V(D)J Recombination by Transgenic Mapping. Molecular and Cellular Biology, 2000, 20, 42-53.	1.1	40
26	Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Research, 2016, 44, 3567-3585.	6.5	39
27	Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 ⁺ T cell activation. Science Signaling, 2019, 12, .	1.6	38
28	Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia. Cancer Discovery, 2016, 6, 972-985.	7.7	33
29	Novel CD28-Responsive Enhancer Activated by CREB/ATF and AP-1 Families in the Human Interleukin-2 Receptor α-Chain Locus. Molecular and Cellular Biology, 2001, 21, 4515-4527.	1.1	32
30	Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. Journal of Clinical Investigation, 2015, 125, 3505-3518.	3.9	32
31	In Vivo Reinsertion of Excised Episomes by the V(D)J Recombinase: A Potential Threat to Genomic Stability. PLoS Biology, 2007, 5, e43.	2.6	31
32	Extensive molecular mapping of TCRα/δ- and TCRβ-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood, 2012, 120, 3298-3309.	0.6	31
33	Homeobox protein TLX3 activates miR-125b expression to promote T-cell acute lymphoblastic leukemia. Blood Advances, 2017, 1, 733-747.	2.5	31
34	Regulation of V(D)J recombination. Current Opinion in Immunology, 2006, 18, 158-163.	2.4	30
35	CoCAS: a ChIP-on-chip analysis suite. Bioinformatics, 2009, 25, 954-955.	1.8	25
36	Epigenetic Silencing Affects <scp>l</scp> -Asparaginase Sensitivity and Predicts Outcome in T-ALL. Clinical Cancer Research, 2019, 25, 2483-2493.	3.2	25

SALVATORE SPICUGLIA

#	Article	IF	CITATIONS
37	Assessing the Role of the T Cell Receptor \hat{I}^2 Gene Enhancer in Regulating Coding Joint Formation during V(D)J Recombination. Journal of Biological Chemistry, 2003, 278, 18101-18109.	1.6	24
38	PRC2 loss of function confers a targetable vulnerability to BET proteins in T-ALL. Blood, 2021, 138, 1855-1869.	0.6	23
39	Characterisation of Genome-Wide PLZF/RARA Target Genes. PLoS ONE, 2011, 6, e24176.	1.1	22
40	Cryptic XPO1-MLLT10 translocation is associated with HOXA locus deregulation in T-ALL. Blood, 2014, 124, 3023-3025.	0.6	21
41	Epromoters function as a hub to recruit key transcription factors required for the inflammatory response. Nature Communications, 2021, 12, 6660.	5.8	20
42	Epigenetic control of Tcrb gene rearrangement. Seminars in Immunology, 2010, 22, 330-336.	2.7	19
43	RUNX1-dependent RAG1 deposition instigates human TCR-Î′ locus rearrangement. Journal of Experimental Medicine, 2014, 211, 1821-1832.	4.2	19
44	Control of IL-2Ralpha gene expression: structural changes within the proximal enhancer/core promoter during T-cell development. Nucleic Acids Research, 2002, 30, 1944-1951.	6.5	17
45	Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP) assays in using in vitro methylated genomic DNA. BMC Research Notes, 2010, 3, 240.	0.6	17
46	A critical regulator of Bcl2 revealed by systematic transcript discovery of lncRNAs associated with T-cell differentiation. Scientific Reports, 2019, 9, 4707.	1.6	17
47	Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. Journal of Experimental Medicine, 2020, 217, .	4.2	15
48	Dynamics of broad H3K4me3 domains uncover an epigenetic switch between cell identity and cancer-related genes. Genome Research, 2022, 32, 1328-1342.	2.4	14
49	Duality of Enhancer Functioning Mode Revealed in a Reduced TCRÎ ² Gene Enhancer Knockin Mouse Model. Journal of Immunology, 2009, 183, 7939-7948.	0.4	13
50	Alternative Enhancer Usage and Targeted Polycomb Marking Hallmark Promoter Choice during T Cell Differentiation. Cell Reports, 2020, 32, 108048.	2.9	13
51	Epigenetic analysis of patients with T-ALL identifies poor outcomes and a hypomethylating agent-responsive subgroup. Science Translational Medicine, 2021, 13, .	5.8	13
52	An update on recent methods applied for deciphering the diversity of the noncoding RNA genome structure and function. Methods, 2013, 63, 3-17.	1.9	11
53	Molecular Genetics at the T-Cell Receptor β Locus: Insights into the Regulation of V(D)J Recombination. Advances in Experimental Medicine and Biology, 2009, 650, 116-132.	0.8	11
54	Transcription-Dependent Generation of a Specialized Chromatin Structure at the TCRÎ ² Locus. Journal of Immunology, 2015, 194, 3432-3443.	0.4	10

SALVATORE SPICUGLIA

#	Article	IF	CITATIONS
55	Low level CpG island promoter methylation predicts a poor outcome in adult T-cell acute lymphoblastic leukemia. Haematologica, 2020, 105, 1575-1581.	1.7	10
56	Identification of ATP2B4 Regulatory Element Containing Functional Genetic Variants Associated with Severe Malaria. International Journal of Molecular Sciences, 2022, 23, 4849.	1.8	9
57	TCRβ Allelic Exclusion in Dynamical Models of V(D)J Recombination Based on Allele Independence. Journal of Immunology, 2010, 185, 1622-1632.	0.4	8
58	Epigenomic translocation of H3K4me3 broad domains over oncogenes following hijacking of super-enhancers. Genome Research, 2022, 32, 1343-1354.	2.4	8
59	Epigenetic regulation of antigen receptor gene rearrangement. F1000 Biology Reports, 2010, 2, .	4.0	7
60	Potassium permanganate as a probe to map DNA–protein interactions in vivo. Journal of Proteomics, 2004, 59, 189-194.	2.4	6
61	IL-12 Signaling Contributes to the Reprogramming of Neonatal CD8+ T Cells. Frontiers in Immunology, 2020, 11, 1089.	2.2	5
62	A comprehensive catalog of LncRNAs expressed in T-cell acute lymphoblastic leukemia. Leukemia and Lymphoma, 2019, 60, 2002-2014.	0.6	4
63	Integration of high-throughput reporter assays identify a critical enhancer of the lkzf1 gene. PLoS ONE, 2020, 15, e0233191.	1.1	4
64	Protein complexes associated with βâ€catenin differentially influence the differentiation profile of neonatal and adult CD8 + T cells. Journal of Cellular Physiology, 2019, 234, 18639-18652.	2.0	2
65	The Role of Epigenetics in Cancer: From Molecular Function to High-Throughput Assays. , 2012, , 137-152.		0