Katerina Goracinova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272321/publications.pdf

Version: 2024-02-01

414414 471509 1,165 36 17 32 citations h-index g-index papers 38 38 38 1726 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reduced Cardiotoxicity of Ponatinib-Loaded PLGA-PEG-PLGA Nanoparticles in Zebrafish Xenograft Model. Materials, 2022, 15, 3960.	2.9	7
2	The impact of molecular tumor profiling on the design strategies for targeting myeloid leukemia and EGFR/CD44-positive solid tumors. Beilstein Journal of Nanotechnology, 2021, 12, 375-401.	2.8	1
3	Design of ophthalmic micelles loaded with diclofenac sodium: effect of chitosan and temperature on the block-copolymer micellization behaviour. Drug Delivery and Translational Research, 2021, , 1.	5.8	1
4	A Comparative Approach to Screen the Capability of Raman and Infrared (Mid- and Near-) Spectroscopy for Quantification of Low-Active Pharmaceutical Ingredient Content Solid Dosage Forms: The Case of Alprazolam. Applied Spectroscopy, 2020, 74, 661-673.	2.2	15
5	Effects of formulation and sol-gel synthesis conditions on physical stability and chemical structure of organomodified silica nanoparticles: a screening study. Makedonsko Farmacevtski Bilten, 2020, 66, 227-228.	0.0	O
6	Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Current Pharmaceutical Design, 2019, 25, 1265-1289.	1.9	4
7	Tablets of soy protein-alginate microparticles with Lactobacillus casei 01: Physicochemical and biopharmaceutical properties. Chemical Industry and Chemical Engineering Quarterly, 2019, 25, 57-66.	0.7	O
8	Design and biological response of doxycycline loaded chitosan microparticles for periodontal disease treatment. Carbohydrate Polymers, 2018, 186, 260-272.	10.2	32
9	Rational development of nanomedicines for molecular targeting in periodontal disease. Archives of Oral Biology, 2018, 93, 31-46.	1.8	9
10	Multifunctional core–shell polymeric and hybrid nanoparticles as anticancer nanomedicines. , 2018, , 109-160.		4
11	SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation. Drug Development and Industrial Pharmacy, 2017, 43, 502-510.	2.0	5
12	Efficacy assessment of self-assembled PLGA-PEG-PLGA nanoparticles: Correlation of nano-bio interface interactions, biodistribution, internalization and gene expression studies. International Journal of Pharmaceutics, 2017, 533, 389-401.	5.2	27
13	Lactobacillus casei loaded Soy Protein-Alginate Microparticles prepared by Spray-Drying. Food Technology and Biotechnology, 2017, 55, 173-186.	2.1	40
14	PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) Nanoparticles as Carriers for SN-38: Design, Optimization and Nano-Bio Interface Interactions. Current Drug Delivery, 2016, 13, 339-352.	1.6	7
15	Synthesis and self-assembly of amphiphilic poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. Journal of Biomaterials Applications, 2015, 29, 867-881.	2.4	18
16	5-Fluorouracil-loaded PLA/PLGA PEG–PPG–PEG polymeric nanoparticles: formulation, <i>in vitro</i> characterization and cell culture studies. Drug Development and Industrial Pharmacy, 2014, 40, 560-567.	2.0	44
17	Comparative biodistribution studies of technetium-99 m radiolabeled amphiphilic nanoparticles using three different reducing agents during the labeling procedure. Journal of Labelled Compounds and Radiopharmaceuticals, 2013, 56, 689-695.	1.0	43
18	Factorial design analysis and optimisation of alginate–Ca–chitosan microspheres. Journal of Microencapsulation, 2013, 30, 81-92.	2.8	13

#	Article	IF	CITATIONS
19	Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO–PPO—PEO nanoparticles using OFAT experiments. European Journal of Pharmaceutical Sciences, 2013, 49, 65-80.	4.0	11
20	Wheat germ agglutinin-functionalised crosslinked polyelectrolyte microparticles for local colon delivery of 5-FU: <i>in vitro</i> efficacy and <i>in vivo</i> gastrointestinal distribution. Journal of Microencapsulation, 2013, 30, 643-656.	2.8	18
21	Wheat germ agglutinin-conjugated chitosan–Ca–alginate microparticles for local colon delivery of 5-FU: Development and in vitro characterization. International Journal of Pharmaceutics, 2009, 381, 166-175.	5.2	50
22	Bioefficacy of budesonide loaded crosslinked polyeletrolyte microparticles in rat model of induced colitis. Journal of Drug Targeting, 2009, 17, 788-802.	4.4	25
23	Bioefficacy of budesonide loaded crosslinked polyeletrolyte microparticles in rat model of induced colitis. Journal of Drug Targeting, 2009, 00, 090804034007017-15.	4.4	0
24	Chitosan coated Ca–alginate microparticles loaded with budesonide for delivery to the inflamed colonic mucosa. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 565-578.	4.3	138
25	Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 2007, 342, 124-136.	5.2	145
26	5-ASA loaded chitosan–Ca–alginate microparticles: Preparation and physicochemical characterization. International Journal of Pharmaceutics, 2007, 345, 59-69.	5.2	141
27	The effects of lyophilization on the stability of liposomes containing 5-FU. International Journal of Pharmaceutics, 2005, 291, 79-86.	5.2	127
28	Formulation and evaluation of diazepam hydrogel for rectal administration. Acta Pharmaceutica, 2005, 55, 251-61.	2.0	6
29	Poly(lactide-co-glycolide) microparticles as systems for controlled release of proteins preparation and characterization. Acta Pharmaceutica, 2004, 54, 215-29.	2.0	27
30	5-Fluorouracil in topical liposome gels for anticancer treatment-formulation and evaluation. Acta Pharmaceutica, 2003, 53, 241-50.	2.0	32
31	Biodistribution of 131I-BSA loaded gelatin microspheres after peroral application to BALB/c mice-particle size study. Acta Pharmaceutica, 2003, 53, 187-97.	2.0	7
32	Biodegradation and drug release studies of BSA loaded gelatin microspheres. International Journal of Pharmaceutics, 2002, 242, 247-249.	5.2	41
33	Biodistribution studies of BSA loaded gelatin microspheres after peroral application. International Journal of Pharmaceutics, 2002, 242, 251-253.	5.2	11
34	Release profile of lidocaine HCl from topical liposomal gel formulation. International Journal of Pharmaceutics, 2002, 242, 381-384.	5.2	100
35	Preparation, Physical Characterization, Mechanisms of Drug/Polymer Interactions, and Stability Studies of Controlled-Release Solid Dispersion Granules Containing Weak Base as Active Substance. Drug Development and Industrial Pharmacy, 1996, 22, 255-262.	2.0	11
36	Drug Targeting in IBD Treatment – Existing and New Approaches. , 0, , .		3