Susanta Hazra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272116/publications.pdf

Version: 2024-02-01

185998 276539 1,819 60 28 41 h-index citations g-index papers 60 60 60 1476 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Metal–Organic Frameworks with Pyridyl-Based Isophthalic Acid and Their Catalytic Applications in Microwave Assisted Peroxidative Oxidation of Alcohols and Henry Reaction. Crystal Growth and Design, 2016, 16, 1837-1849.	1.4	94
2	Solvent-Dependent Structural Variation of Zinc(II) Coordination Polymers and Their Catalytic Activity in the Knoevenagel Condensation Reaction. Crystal Growth and Design, 2015, 15, 4185-4197.	1.4	89
3	Self-assembled [2×1+1×2] heterotetranuclear Cull3MnII/Cull3CoII and [2×2+1×3] heptanuclear Cull7 compounds derived from N,N′-o-phenylenebis(3-ethoxysalicylaldimine): Structures and magnetic properties. Polyhedron, 2008, 27, 1201-1213.	1.0	78
4	Cocrystallized Dinuclearâ^'Mononuclear Cull3Nal and Double-Deckerâ^'Triple-Decker Cull5Kl3 Complexes Derived from N,N′-Ethylenebis(3-ethoxysalicylaldimine). Crystal Growth and Design, 2009, 9, 3603-3608.	1.4	75
5	Magnetic Exchange Interactions and Magneto-Structural Correlations in Heterobridged μ-Phenoxo-μ _{1,1} -Azide Dinickel(II) Compounds: A Combined Experimental and Theoretical Exploration. Inorganic Chemistry, 2011, 50, 7257-7267.	1.9	70
6	Syntheses and crystal structures of CullBilll, CullBallCull, [CullPbll]2 and cocrystallized (UVIO2)2.4Cullcomplexes: structural diversity of the coordination compounds derived from N,N′-ethylenebis(3-ethoxysalicylaldiimine). CrystEngComm, 2010, 12, 470-477.	1.3	61
7	A unique example of a three component cocrystal of metal complexes. CrystEngComm, 2010, 12, 1416-1421.	1.3	59
8	Synthesis, structure and catalytic application of lead(<scp>ii</scp>) complexes in cyanosilylation reactions. Dalton Transactions, 2015, 44, 268-280.	1.6	58
9	Magneto-Structural Correlation Studies and Theoretical Calculations of a Unique Family of Single End-to-End Azide-Bridged Ni ^{II} ₄ Cyclic Clusters. Inorganic Chemistry, 2010, 49, 9517-9526.	1.9	52
10	Catalytic oxidation of cyclohexane with hydrogen peroxide and a tetracopper(II) complex in an ionic liquid. Comptes Rendus Chimie, 2015, 18, 758-765.	0.2	51
11	Sulfonated Schiff base dinuclear and polymeric copper(<scp>ii</scp>) complexes: crystal structures, magnetic properties and catalytic application in Henry reaction. New Journal of Chemistry, 2015, 39, 3424-3434.	1.4	50
12	Syntheses, Structures and Magnetic Properties of Heterobridged Dinuclear and Cubaneâ€Type Tetranuclear Complexes of Nickel(II) Derived from a Schiff Base Ligand. European Journal of Inorganic Chemistry, 2009, 2009, 3458-3466.	1.0	47
13	Tetrametallic [2 \tilde{A} — 1 + 1 \tilde{A} — 2], octametallic double-deckerâ \in "triple-decker [5 \tilde{A} — 1 + 3 \tilde{A} — 1], hexametallic quadruple-decker and dimetallic-based one-dimensional complexes of copper(ii) and s block metal ions derived from N,Nå \in 2-ethylenebis(3-ethoxysalicylaldimine). CrystEngComm, 2010, 12, 4131.	1.3	47
14	Syntheses and crystal structures of dinuclear, trinuclear $[2 \tilde{A}-1+1 \tilde{A}-1]$ and tetranuclear $[2 \tilde{A}-1+1 \tilde{A}-2]$ copper($\langle scp \rangle ii \langle scp \rangle a \in d \leq sup \rangle 10 \langle sup \rangle complexes$ ($d \leq sup \rangle 10 \langle sup \rangle a \in d \leq sup \rangle 10 \langle sup \rangle $	Tj <u>FJ</u> Qq0	0 Q.rgBT /Ove
15	Synthesis, structure and catalytic applications of amidoterephthalate copper complexes in the diastereoselective Henry reaction in aqueous medium. New Journal of Chemistry, 2014, 38, 4837-4846.	1.4	46
16	Syntheses, Structures, Magnetic Properties, and Density Functional Theory Magneto-Structural Correlations of Bis(ν-phenoxo) and Bis(ν-phenoxo)-μ-acetate/Bis(μ-phenoxo)-bis(μ-acetate) Dinuclear Fe ^{III} Ni ^{II} Compounds. Inorganic Chemistry, 2013, 52, 12881-12892.	1.9	45
17	Nanoporous lanthanide metal–organic frameworks as efficient heterogeneous catalysts for the Henry reaction. CrystEngComm, 2016, 18, 1337-1349.	1.3	43
18	Sulfonated Schiff base Sn(IV) complexes as potential anticancer agents. Journal of Inorganic Biochemistry, 2016, 162, 83-95.	1.5	41

#	Article	IF	CITATIONS
19	Bis-phenoxido and bis-acetato bridged heteronuclear {Co ^{III} Dy ^{III} } single molecule magnets with two slow relaxation branches. Dalton Transactions, 2016, 45, 7510-7520.	1.6	41
20	Role of Coordinated Water and Hydrogenâ€Bonding Interactions in Stabilizing Monophenoxidoâ€Bridged Triangular Cu ^{II} M ^{II} ÂCu ^{II} Compounds (M = Cu, Co, Ni, or Fe) Derived from <i>N</i> N′àêEthylenebis(3â€methÂoxysalicylaldimine): Syntheses, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2009, 2009, 3447-3457.	1.0	38
21	Magnetic and Electrochemical Properties of a Heterobridged μâ€Phenoxido–μ _{1,1} â€Azide Dinickel(II) Compound: A Unique Example Demonstrating the Bridge Distance Dependency of Exchange Integral. European Journal of Inorganic Chemistry, 2009, 2009, 4982-4988.	1.0	38
22	Syntheses, Structures and Magnetic Properties of Trinuclear CullMllCull (M = Cu, Ni, Co and Fe) and Tetranuclear $[2\tilde{A}-1+1\tilde{A}-2]$ CullMnll-2Cull Complexes Derived from a Compartmental Ligand: The Schiff Base 3-Methoxysalicylaldehyde Diamine Can also Stabilize a. European Journal of Inorganic Chemistry, 2010, 2010, 3125-3134.	1.0	37
23	Syntheses, structures and electrochemistry of manganese(III) complexes derived from N,N′-o-phenylenebis(3-ethoxysalicylaldimine): Efficient catalyst for styrene epoxidation. Polyhedron, 2009, 28, 2473-2479.	1.0	35
24	Sulfonated Schiff base copper(ii) complexes as efficient and selective catalysts in alcohol oxidation: syntheses and crystal structures. RSC Advances, 2015, 5, 90079-90088.	1.7	31
25	Synthesis, molecular and supramolecular structures, electrochemistry and magnetic properties of two macrocyclic dicopper(II) complexes: Microporous supramolecular assembly. Polyhedron, 2009, 28, 3707-3714.	1.0	30
26	Syntheses, crystal structures and supramolecular topologies of copper(II)–main group metal complexes derived from N,N′-o-phenylenebis(3-ethoxysalicylaldimine). Journal of Molecular Structure, 2011, 1004, 204-214.	1.8	30
27	Slow magnetic relaxation and electron delocalization in anS=9/2iron(II/III) complex with two crystallographically inequivalent iron sites. Journal of Chemical Physics, 2011, 134, 174507.	1.2	28
28	A cyclic tetranuclear cuboid type copper(<scp>ii</scp>) complex doubly supported by cyclohexane-1,4-dicarboxylate: molecular and supramolecular structure and cyclohexane oxidation activity. RSC Advances, 2014, 4, 48449-48457.	1.7	28
29	A sulfonated Schiff base dimethyltin(<scp>iv</scp>) coordination polymer: synthesis, characterization and application as a catalyst for ultrasound- or microwave-assisted Baeyer–Villiger oxidation under solvent-free conditions. RSC Advances, 2016, 6, 78225-78233.	1.7	28
30	Platinum and palladium complexes with tetrazole ligands: Synthesis, structure and applications. Coordination Chemistry Reviews, 2021, 446, 214132.	9.5	28
31	Role of Water and Solvent in the Formation of Three Mononuclear Copper(II) Crystals: A New Type of Hydrate Isomerism in Coordination Chemistry. European Journal of Inorganic Chemistry, 2009, 2009, 4887-4894.	1.0	26
32	Zinc amidoisophthalate complexes and their catalytic application in the diastereoselective Henry reaction. New Journal of Chemistry, 2015, 39, 3004-3014.	1.4	26
33	Heterometallic Copper(II)–Tin(II/IV) Salts, Cocrystals, and Salt Cocrystals: Selectivity and Structural Diversity Depending on Ligand Substitution and the Metal Oxidation State. Crystal Growth and Design, 2016, 16, 3777-3790.	1.4	24
34	Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coordination Chemistry Reviews, 2022, 453, 214314.	9.5	24
35	Syntheses and crystal structures of benzene-sulfonate and -carboxylate copper polymers and their application in the oxidation of cyclohexane in ionic liquid under mild conditions. Dalton Transactions, 2016, 45, 13957-13968.	1.6	23
36	Solvent-Free Microwave-Assisted Peroxidative Oxidation of Alcohols Catalyzed by Iron(III)-TEMPO Catalytic Systems. Catalysis Letters, 2015, 145, 2066-2076.	1.4	21

#	Article	IF	Citations
37	Sulfonated Schiff base dimeric and polymeric copper(II) complexes: Temperature dependent synthesis, crystal structure and catalytic alcohol oxidation studies. Inorganica Chimica Acta, 2017, 455, 549-556.	1.2	21
38	Syntheses, structures, absorption and emission properties of a tetraiminodiphenol macrocyclic ligand and its dinuclear Zn(II) and Pb(II) complexes. Polyhedron, 2009, 28, 2871-2878.	1.0	20
39	Dinuclear based polymeric copper(II) complexes derived from a Schiff base ligand: effect of secondary bridging moieties on geometrical orientations and magnetic properties. Inorganic Chemistry Communication, 2014, 46, 113-117.	1.8	17
40	Flexibility and lability of a phenyl ligand in hetero-organometallic 3d metal–Sn(iv) compounds and their catalytic activity in Baeyer–Villiger oxidation of cyclohexanone. Dalton Transactions, 2017, 46, 13364-13375.	1.6	17
41	N–Hâ <o 1d="" and="" chains="" heterobimetallic<br="" n–hâ<cl="" of="" supported="">Cu^{II}/Ni^{II}–Sn^{IV} cocrystals. Dalton Transactions, 2016, 45, 17929-17938.</o>	1.6	14
42	A tetranuclear diphenyltin(IV) complex and its catalytic activity in the aerobic Baeyer-Villiger oxidation of cyclohexanone. Journal of Organometallic Chemistry, 2018, 867, 193-200.	0.8	14
43	Packing polymorphism in 3-amino-2-pyrazinecarboxylate based tin(<scp>ii</scp>) complexes and their catalytic activity towards cyanosilylation of aldehydes. New Journal of Chemistry, 2018, 42, 17513-17523.	1.4	14
44	Designed synthesis, structure, and 3-D topology of a supramolecular dimer and inorganic–organic cocrystal. Journal of Coordination Chemistry, 2010, 63, 1666-1677.	0.8	13
45	Syntheses, structures, and electrochemistry of a dinuclear compound and a mononuclear–mononuclear cocrystalline compound of uranyl(VI). Crystal Research and Technology, 2008, 43, 1220-1229.	0.6	12
46	1D hacksaw chain bipyridine–sulfonate Schiff base-dicopper(<scp>ii</scp>) as a host for variable solvent guests. RSC Advances, 2015, 5, 28070-28079.	1.7	12
47	Metal–tin derivatives of compartmental Schiff Bases: Synthesis, structure and application. Coordination Chemistry Reviews, 2019, 395, 1-24.	9.5	12
48	Syntheses, Structures, and Catalytic Hydrocarbon Oxidation Properties of N-Heterocycle-Sulfonated Schiff Base Copper(II) Complexes. Inorganics, 2019, 7, 17.	1.2	10
49	Syntheses, molecular and supramolecular structures, electrochemistry and magnetic properties of two macrocyclic dinickel(II) complexes. Polyhedron, 2011, 30, 1906-1913.	1.0	9
50	Synthesis, molecular and supramolecular structure, spectroscopy and electrochemistry of a dialkoxo-bridged diuranyl(VI) compound. Polyhedron, 2008, 27, 1408-1414.	1.0	8
51	Unfolding biological properties of a versatile dicopper(II) precursor and its two mononuclear copper(II) derivatives. Journal of Inorganic Biochemistry, 2017, 174, 25-36.	1.5	8
52	The Henry reaction catalyzed by Nill and Cull complexes bearing arylhydrazones of acetoacetanilide. Journal of Organometallic Chemistry, 2018, 869, 48-53.	0.8	7
53	Biological Evaluation of Azo―and Iminoâ€Based Carboxylate Triphenyltin(IV) Compounds. European Journal of Inorganic Chemistry, 2020, 2020, 930-941.	1.0	7
54	A Mixed Valence CollColll2 Field-Supported Single Molecule Magnet: Solvent-Dependent Structural Variation. Molecules, 2021, 26, 1060.	1.7	4

#	Article	IF	CITATIONS
55	M ^{MA·A·A·Cl Interaction Supported Heterometallic NiSn}{Sn} and NiSn}{Sn} Complex Salts: Possibility of Ion-Pair-Assisted Tetrel Bonds, Crystal Growth and Design, 2022, 22, 341-355.}	1.4	3
56	Synthesis, supramolecular structure and thermal study of a new dinuclear zinc(II) complex derived from benzene-1,2,4,5-tetracarboxylic acid. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, .	0.4	2
57	Synthesis, structure and thermal study of a new 3-aminopyrazine-2-carboxylate based zinc(II) coordination polymer. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 413-419.	0.4	2
58	Noncovalent Interactions in the Nitroaldol (Henry) Reaction. RSC Catalysis Series, 2019, , 232-252.	0.1	2
59	Synthesis, molecular and supramolecular structure of a new dinuclear aluminium(III) complex derived from 3-aminopyrazine- 2-carboxylic acid. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, .	0.4	1
60	Alkoxo bridged heterobimetallic ColliSnIV compounds with face shared coordination octahedra: Synthesis, crystal structure and cyanosilylation catalysis. Journal of Organometallic Chemistry, 2021, 949, 121949.	0.8	1