Dolores Fregona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6272076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Binuclear Heteroleptic Ru(III) Dithiocarbamate Complexes: A Step towards Tunable Antiproliferative Agents. Inorganics, 2022, 10, 37.	1.2	3
2	Tumor growth of neurofibromin-deficient cells is driven by decreased respiration and hampered by NAD+ and SIRT3. Cell Death and Differentiation, 2022, 29, 1996-2008.	5.0	8
3	Gold(III) to Ruthenium(III) Metal Exchange in Dithiocarbamato Complexes Tunes Their Biological Mode of Action for Cytotoxicity in Cancer Cells. Molecules, 2021, 26, 4073.	1.7	7
4	Labelled micelles for the delivery of cytotoxic Cu(II) and Ru(III) compounds in the treatment of aggressive orphan cancers: Design and biological in vitro data. Journal of Inorganic Biochemistry, 2020, 213, 111259.	1.5	10
5	Structural Characterization of a Gold/Serum Albumin Complex. Inorganic Chemistry, 2019, 58, 10616-10619.	1.9	34
6	Cu ^{II} and Au ^{III} Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem, 2019, 14, 1162-1172.	1.6	17
7	Au(iii)-Proline derivatives exhibiting selective antiproliferative activity against HepG2/SB3 apoptosis-resistant cancer cells. Dalton Transactions, 2019, 48, 16017-16025.	1.6	5
8	Anticancer Gold(III) Peptidomimetics: From Synthesis to in vitro and ex vivo Biological Evaluations. ChemMedChem, 2018, 13, 1131-1145.	1.6	23
9	Synthesis, chemical characterization and cancer cell growth-inhibitory activities of Cu(ii) and Ru(iii) aliphatic and aromatic dithiocarbamato complexes. Dalton Transactions, 2018, 47, 15477-15486.	1.6	22
10	Editorial: Throwing Light on Recent Advances on Metallodrugs: From Deemed Poisons to a Striking Hope for the Future. Current Medicinal Chemistry, 2018, 25, 434-436.	1.2	6
11	New comprehensive studies of a gold(III) Dithiocarbamate complex with proven anticancer properties: Aqueous dissolution with cyclodextrins, pharmacokinetics and upstream inhibition of the ubiquitin-proteasome pathway. European Journal of Medicinal Chemistry, 2017, 138, 115-127.	2.6	22
12	Cell and Cellâ€Free Mechanistic Studies on Two Gold(III) Complexes with Proven Antitumor Properties. European Journal of Inorganic Chemistry, 2017, 2017, 1737-1744.	1.0	17
13	Ru(III) anticancer agents with aromatic and non-aromatic dithiocarbamates asligands: Loading into nanocarriers and preliminary biological studies. Journal of Inorganic Biochemistry, 2017, 166, 76.	1.5	4
14	Ru(III) anticancer agents with aromatic and non-aromatic dithiocarbamates as ligands: Loading into nanocarriers and preliminary biological studies. Journal of Inorganic Biochemistry, 2016, 165, 159-169.	1.5	18
15	Is matching ruthenium with dithiocarbamato ligands a potent chemotherapeutic weapon in oncology?. Future Medicinal Chemistry, 2016, 8, 211-226.	1.1	12
16	Gold Complexes for Therapeutic Purposes: an Updated Patent Review (2010-2015). Current Medicinal Chemistry, 2016, 23, 3374-3403.	1.2	41
17	Gold(III)–pyrrolidinedithiocarbamato Derivatives as Antineoplastic Agents. ChemistryOpen, 2015, 4, 183-191.	0.9	21
18	CCK8 peptide-labeled Pluronic® F127 micelles as a targeted vehicle of gold-based anticancer chemotherapeutics. MedChemComm, 2015, 6, 155-163.	3.5	16

DOLORES FREGONA

#	Article	IF	CITATIONS
19	Gold(III) Complexes in the Oncological Preclinical Arena: From Aminoderivatives to Peptidomimetics. Current Topics in Medicinal Chemistry, 2015, 16, 360-380.	1.0	33
20	Gold(III)-Dithiocarbamato Peptidomimetics in the Forefront of the Targeted Anticancer Therapy: Preclinical Studies against Human Breast Neoplasia. PLoS ONE, 2014, 9, e84248.	1.1	42
21	Preclinical activity of multiple-target gold(III)-dithiocarbamato peptidomimetics in prostate cancer cells and xenografts. Future Medicinal Chemistry, 2014, 6, 1249-1263.	1.1	15
22	Target selective micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. International Journal of Pharmaceutics, 2014, 473, 194-202.	2.6	28
23	Beyond platinums: gold complexes as anticancer agents. Anticancer Research, 2014, 34, 487-92.	0.5	105
24	Insights into the Reactivity of Gold–Dithiocarbamato Anticancer Agents toward Model Biomolecules by Using Multinuclear NMR Spectroscopy. Chemistry - A European Journal, 2013, 19, 13428-13436.	1.7	20
25	Targeting the ubiquitin–proteasome pathway with inorganic compounds to fight cancer: a challenge for the future. Future Medicinal Chemistry, 2012, 4, 525-543.	1.1	52
26	Noble metal-dithiocarbamates precious allies in the fight against cancer. Mini-Reviews in Medicinal Chemistry, 2012, 12, 1216-1229.	1.1	62
27	Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3α/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death and Disease, 2012, 3, e444-e444.	2.7	62
28	Zinc(II) complexes with dithiocarbamato derivatives: Structural characterisation and biological assays on cancerous cell lines. Journal of Inorganic Biochemistry, 2012, 117, 131-139.	1.5	41
29	2D-DIGE analysis of ovarian cancer cell responses to cytotoxic gold compounds. Molecular BioSystems, 2012, 8, 985-993.	2.9	30
30	Toward the Selective Delivery of Chemotherapeutics into Tumor Cells by Targeting Peptide Transporters: Tailored Gold-Based Anticancer Peptidomimetics. Journal of Medicinal Chemistry, 2012, 55, 2212-2226.	2.9	56
31	Ruthenium(II/III)â€Based Compounds with Encouraging Antiproliferative Activity against Nonâ€smallâ€Cell Lung Cancer. Chemistry - A European Journal, 2012, 18, 14464-14472.	1.7	27
32	Rational design of gold(III)-dithiocarbamato peptidomimetics for the targeted anticancer chemotherapy. Journal of Inorganic Biochemistry, 2012, 117, 248-260.	1.5	33
33	t-Butylsarcosinedithiocarbamato gold(III)-based anticancer agents: Design, in vitro biological evaluation and interaction with model biomolecules. Inorganica Chimica Acta, 2012, 393, 304-317.	1.2	17
34	Promising anticancer mono- and dinuclear ruthenium(iii) dithiocarbamato complexes: systematic solution studies. Dalton Transactions, 2011, 40, 11885.	1.6	27
35	Antitumor activity of gold(III)â€dithiocarbamato derivatives on prostate cancer cells and xenografts. International Journal of Cancer, 2011, 128, 206-215.	2.3	120
36	Gold(III)â€dithiocarbamato anticancer agents: Activity, toxicology and histopathological studies in rodents. International Journal of Cancer, 2011, 129, 487-496.	2.3	92

DOLORES FREGONA

#	Article	IF	CITATIONS
37	Inhibition of tumor proteasome activity by gold–dithiocarbamato complexes via both redoxâ€dependent and â€independent processes. Journal of Cellular Biochemistry, 2010, 109, 162-172.	1.2	106
38	Latest Insights into the Anticancer Activity of Gold(III)-Dithiocarbamato Complexes. Anti-Cancer Agents in Medicinal Chemistry, 2010, 10, 283-292.	0.9	72
39	Groundbreaking gold(III) anticancer agents. Drug Discovery Today, 2009, 14, 1075-1076.	3.2	27
40	Chemistry, antiproliferative properties, tumor selectivity, and molecular mechanisms of novel gold(III) compounds for cancer treatment: a systematic study. Journal of Biological Inorganic Chemistry, 2009, 14, 1139-1149.	1.1	119
41	Preliminary chemico-biological studies on Ru(III) compounds with S-methyl pyrrolidine/dimethyl dimethyl dithiocarbamate. Journal of Inorganic Biochemistry, 2009, 103, 774-782.	1.5	17
42	The Midas touch in cancer chemotherapy: from platinum- to gold-dithiocarbamato complexes. Dalton Transactions, 2009, , 10670.	1.6	86
43	Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity. Toxicology and Applied Pharmacology, 2008, 231, 24-33.	1.3	126
44	Chemical and Biological Profiles of Novel Copper(II) Complexes Containing S-Donor Ligands for the Treatment of Cancer. Inorganic Chemistry, 2008, 47, 6336-6343.	1.9	42
45	Ru(iii)-based compounds with sulfur donor ligands: synthesis, characterization, electrochemical behaviour and anticancer activity. Dalton Transactions, 2008, , 6699.	1.6	23
46	Gold complexes as prospective metal-based anticancer drugs. Histology and Histopathology, 2008, 23, 101-8.	0.5	89
47	Antiproliferative and apoptotic effects of two new gold(III) methylsarcosinedithiocarbamate derivatives on human acute myeloid leukemia cells in vitro. Anti-Cancer Drugs, 2007, 18, 323-332.	0.7	42
48	Gold(III)-Dithiocarbamato Complexes Induce Cancer Cell Death Triggered by Thioredoxin Redox System Inhibition and Activation of ERK Pathway. Chemistry and Biology, 2007, 14, 1128-1139.	6.2	123
49	Gold(III) Dithiocarbamate Derivatives for the Treatment of Cancer:Â Solution Chemistry, DNA Binding, and Hemolytic Properties. Journal of Medicinal Chemistry, 2006, 49, 1648-1657.	2.9	290
50	A Novel Anticancer Gold(III) Dithiocarbamate Compound Inhibits the Activity of a Purified 20S Proteasome and 26S Proteasome in Human Breast Cancer Cell Cultures and Xenografts. Cancer Research, 2006, 66, 10478-10486.	0.4	302
51	Mixed complexes of Pt(II) and Pd(II) with ethylsarcosinedithiocarbamate and 2-/3-picoline as antitumor agents. Journal of Inorganic Biochemistry, 2005, 99, 2139-2150.	1.5	47
52	Gold(III) dithiocarbamate derivatives of N-methylglycine: An experimental and theoretical investigation. Polyhedron, 2005, 24, 521-531.	1.0	54
53	Gold Dithiocarbamate Derivatives as Potential Antineoplastic Agents:Â Design, Spectroscopic Properties, and in Vitro Antitumor Activity. Inorganic Chemistry, 2005, 44, 1867-1881.	1.9	321
54	Synthesis, Characterization, and Comparative in Vitro Cytotoxicity Studies of Platinum(II), Palladium(II), and Gold(III) Methylsarcosinedithiocarbamate Complexes. Journal of Medicinal Chemistry, 2005, 48, 1588-1595.	2.9	160

DOLORES FREGONA

#	Article	IF	CITATIONS
55	Antitumor activity of a new platinum(II) complex with low nephrotoxicity and genotoxicity. Chemico-Biological Interactions, 2004, 148, 37-48.	1.7	40
56	Characterization studies and cytotoxicity assays of Pt(II) and Pd(II) dithiocarbamate complexes by means of FT-IR, NMR spectroscopy and mass spectrometry. Journal of Inorganic Biochemistry, 2004, 98, 1117-1128.	1.5	96
57	Erythrocyte aminolevulinic acid dehydratase inhibition by cis-platin. Toxicology Letters, 2004, 152, 105-10.	0.4	5
58	Organotin(IV) complexes of ethylsarcosine hydrochloride: synthesis, characterization andin vitro cytotoxic activity. Applied Organometallic Chemistry, 2003, 17, 9-16.	1.7	19
59	Pt(II) and Pd(II) derivatives of ter-butylsarcosinedithiocarbamate. Journal of Inorganic Biochemistry, 2003, 93, 181-189.	1.5	74
60	Synthesis of a new platinum(II) complex: anticancer activity and nephrotoxicity in vitro. Toxicology in Vitro, 2002, 16, 413-419.	1.1	76
61	Cytotoxicity and DNA damage induced by a new platinum(II) complex with pyridine and dithiocarbamate. Chemico-Biological Interactions, 2002, 140, 215-229.	1.7	27
62	Synthesis of a palladium(II)-dithiocarbamate complex: biological assay and nephrotoxicity in rats. Archives of Toxicology, 2002, 76, 262-268.	1.9	36
63	Platinum(II) and palladium(II) complexes with dithiocarbamates and amines: synthesis, characterization and cell assay. Journal of Inorganic Biochemistry, 2001, 83, 31-40.	1.5	118
64	Functionalized dithioester and dithiocarbamato complexes of platinum(II) halides. Polyhedron, 1997, 16, 3795-3805.	1.0	14