Puneet Pathak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/627194/publications.pdf

Version: 2024-02-01

21 papers

405 citations

1162367 8 h-index 18 g-index

21 all docs

21 docs citations

times ranked

21

454 citing authors

#	Article	IF	CITATIONS
1	Waste paper: An underutilized but promising source for nanocellulose mining. Waste Management, 2020, 102, 281-303.	3.7	103
2	Production of Crude Cellulase and Xylanase From Trichoderma harzianum PPDDN10 NFCCI-2925 and Its Application in Photocopier Waste Paper Recycling. Applied Biochemistry and Biotechnology, 2014, 172, 3776-3797.	1.4	85
3	Optimization of chemical and enzymatic deinking of photocopier waste paper. BioResources, 2011, 6, 447-463.	0.5	51
4	Static intermittent fed-batch production of bacterial nanocellulose from black tea and its modification using chitosan to develop antibacterial green packaging material. Journal of Cleaner Production, 2021, 279, 123608.	4.6	42
5	Facile chemo-refining approach for production of micro-nanofibrillated cellulose from bleached mixed hardwood pulp to improve paper quality. Carbohydrate Polymers, 2020, 238, 116186.	5.1	17
6	Ternary nano-biocomposite films using synergistic combination of bacterial cellulose with chitosan and gelatin for tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 166-188.	1.9	15
7	Impact of mild and harsh conditions of formic acid-based organosolv pretreatment on biomass fractionation of sugarcane tops. Biomass Conversion and Biorefinery, 2021, 11, 2027-2040.	2.9	14
8	Improved deinking and biobleaching efficiency of enzyme consortium from Thermomyces lanuginosus VAPS25 using genetic Algorithm-Artificial neural network based tools. Bioresource Technology, 2022, 349, 126846.	4.8	12
9	Rotary disc bioreactor-based approach for bacterial nanocellulose production using Gluconacetobacter xylinus NCIM 2526 strain. Cellulose, 2022, 29, 7177-7191.	2.4	9
10	Partial purification of bacterial cellulo-xylanolytic enzymes and their application in deinking of photocopier waste paper. Environmental Science and Pollution Research, 2021, 28, 61317-61328.	2.7	8
11	Chapter 6 Microbial Enzymes for Pulp and Paper Industry. , 2016, , 163-240.		8
12	Utilization of Different Microbes to Enhance the Biogas Production from Banana Stem Juice. Journal of Environmental Engineering, ASCE, 2020, 146, .	0.7	7
13	Enzymatic deinking for recycling of photocopier waste papers using crude cellulase and xylanase of Trichoderma harzianum PPDDN10 NFCCI 2925. Nordic Pulp and Paper Research Journal, 2015, 30, 689-700.	0.3	6
14	Processes and problems of pulp and paper industry: an overview. ChemistrySelect, 2023, 8, 299-325.	0.7	6
15	Two-Step Saccharification of the Xylan Portion of Sugarcane Waste by Recombinant Xylanolytic Enzymes for Enhanced Xylose Production. ACS Omega, 2021, 6, 11772-11782.	1.6	6
16	Improving Biogas Production by Co-digestion of Banana Stem Juice with Agro-Based Material Washings and Digestate Along with Microbial Culture. Waste and Biomass Valorization, 2021, 12, 1385-1393.	1.8	5
17	Micro-nanofibrillated cellulose preparation from bleached softwood pulp using chemo-refining approach and its evaluation as strength enhancer for paper properties. Applied Nanoscience (Switzerland), 2021, 11, 101-115.	1.6	5
18	Fungal Enzymes Application for Recycling of Waste Papers. Current Biotechnology, 2018, 7, 151-167.	0.2	5

Puneet Pathak

#	Article	IF	CITATIONS
19	Slime control in paper mill using biological agents as biocides. ChemistrySelect, 2021, 6, 149-173.	0.7	1
20	Biodeinking: an eco-friendly alternative for chemicals based recycled fiber processing. ChemistrySelect, 2023, 8, 1941-1965.	0.7	0
21	"PRODUCTION OF ADVANCED FIBRILLATED CELLULOSIC MATERIAL FROM WHEAT STRAW BY REFINING PROCESS TO IMPROVE PAPER QUALITY". Cellulose Chemistry and Technology, 2022, 56, 625-635.	0.5	O