Amir Amiri-Yekta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6271426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nature Communications, 2018, 9, 686.	5.8	173
2	Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. American Journal of Human Genetics, 2018, 102, 636-648.	2.6	121
3	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	2.6	113
4	Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new <i>DNAH1</i> mutations. Human Reproduction, 2016, 31, 2872-2880.	0.4	96
5	<scp>SPINK</scp> 2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inAhomozygotes. EMBO Molecular Medicine, 2017, 9, 1132-1149.	3.3	95
6	Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Human Reproduction, 2018, 33, 1973-1984.	0.4	93
7	A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. American Journal of Human Genetics, 2018, 103, 400-412.	2.6	81
8	Homozygous mutations in <i>SPEF2</i> induce multiple morphological abnormalities of the sperm flagella and male infertility. Journal of Medical Genetics, 2020, 57, 31-37.	1.5	57
9	Biallelic mutations in <i>CFAP65</i> cause male infertility with multiple morphological abnormalities of the sperm flagella in humans and mice. Journal of Medical Genetics, 2020, 57, 89-95.	1.5	55
10	<scp>PATL</scp> 2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Molecular Medicine, 2018, 10, .	3.3	53
11	Mutations in TTC29, Encoding an Evolutionarily Conserved Axonemal Protein, Result in Asthenozoospermia and Male Infertility. American Journal of Human Genetics, 2019, 105, 1148-1167.	2.6	44
12	CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Human Reproduction, 2019, 34, 2071-2079.	0.4	43
13	"Conservation cloning―of vulnerable Esfahan mouflon (Ovis orientalis isphahanica): in vitro and in vivo studies. European Journal of Wildlife Research, 2011, 57, 959-969.	0.7	38
14	Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous <i>QRICH2</i> mutations. Clinical Genetics, 2019, 96, 394-401.	1.0	30
15	Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Molecular and Cellular Endocrinology, 2018, 468, 70-80.	1.6	24
16	Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Human Genetics, 2021, 140, 1367-1377.	1.8	23
17	Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Applied Biochemistry and Biotechnology, 2018, 185, 986-1003.	1.4	20
18	A missense mutation in IFT74, encoding for an essential component for intraflagellar transport of Tubulin, causes asthenozoospermia and male infertility without clinical signs of Bardet–Biedl syndrome. Human Genetics, 2021, 140, 1031-1043.	1.8	20

AMIR AMIRI-YEKTA

#	Article	IF	CITATIONS
19	Homozygous mutations in <i>CCDC34</i> cause male infertility with oligoasthenoteratozoospermia in humans and mice. Journal of Medical Genetics, 2022, 59, 710-718.	1.5	20
20	Integration and gene co-expression network analysis of scRNA-seq transcriptomes reveal heterogeneity and key functional genes in human spermatogenesis. Scientific Reports, 2021, 11, 19089.	1.6	12
21	Pathophysiologic Mechanisms of Insulin Secretion and Signaling-Related Genes in Etiology of Polycystic Ovary Syndrome. Genetical Research, 2021, 2021, 1-13.	0.3	12
22	Pathophysiologic mechanisms of obesity- and chronic inflammation-related genes in etiology of polycystic ovary syndrome. Iranian Journal of Basic Medical Sciences, 2019, 22, 1378-1386.	1.0	11
23	Designing A Transgenic Chicken: Applying New Approaches toward A Promising Bioreactor. Cell Journal, 2020, 22, 133-139.	0.2	7
24	Direct visualization of pre-protamine 2 detects protamine assembly failures and predicts ICSI success. Molecular Human Reproduction, 2022, 28, .	1.3	5
25	KH domain containing 3 like (KHDC3L) frame-shift mutation causes both recurrent pregnancy loss and hydatidiform mole. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2021, 259, 100-104.	0.5	4
26	Comparative Assessment on the Expression Level of Recombinant Human Follicle-Stimulating Hormone (FSH) in Serum-Containing Versus Protein-Free Culture Media. Molecular Biotechnology, 2017, 59, 490-498.	1.3	3
27	Profiling of Initial Available SARS-CoV-2 Sequences from Iranian Related COVID-19 Patients. Cell Journal, 2020, 22, 148-150.	0.2	3
28	Regulated Acyl-CoA Synthetase Short-Chain Family Member 2 Accumulation during Spermatogenesis. Cell Journal, 2020, 22, 66-70.	0.2	2
29	Cloning and Expression of Iranian Turkmen-thoroughbred Horse Follicle Stimulating Hormone in Pichia pastoris. Iranian Journal of Biotechnology, 2015, 13, 10-17.	0.3	1