Loup Rimbaud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6271048/publications.pdf

Version: 2024-02-01

687363 888059 17 534 13 17 citations h-index g-index papers 20 20 20 580 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sharka Epidemiology and Worldwide Management Strategies: Learning Lessons to Optimize Disease Control in Perennial Plants. Annual Review of Phytopathology, 2015, 53, 357-378.	7.8	76
2	Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Computational Biology, 2018, 14, e1006067.	3. 2	72
3	Differential impact of landscapeâ€scale strategies for crop cultivar deployment on disease dynamics, resistance durability and longâ€ŧerm evolutionary control. Evolutionary Applications, 2018, 11, 705-717.	3.1	55
4	Quantitative Risk Assessment Relating to Adventitious Presence of Allergens in Food: A Probabilistic Model Applied to Peanut in Chocolate. Risk Analysis, 2010, 30, 7-19.	2.7	52
5	Mosaics, mixtures, rotations or pyramiding: What is the optimal strategy to deploy major gene resistance?. Evolutionary Applications, 2018, 11, 1791-1810.	3.1	52
6	Models of Plant Resistance Deployment. Annual Review of Phytopathology, 2021, 59, 125-152.	7.8	47
7	Frequency-dependent assistance as a way out of competitive exclusion between two strains of an emerging virus. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133374.	2.6	30
8	Appraisal of a horizontal two-phase flow photobioreactor for industrial production of delicate microalgae species. Journal of Applied Phycology, 2012, 24, 349-355.	2.8	28
9	Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci. Scientific Reports, 2016, 5, 17696.	3.3	24
10	Assessing the Mismatch Between Incubation and Latent Periods for Vector-Borne Diseases: The Case of Sharka. Phytopathology, 2015, 105, 1408-1416.	2.2	20
11	Using sensitivity analysis to identify key factors for the propagation of a plant epidemic. Royal Society Open Science, 2018, 5, 171435.	2.4	18
12	Improving Management Strategies of Plant Diseases Using Sequential Sensitivity Analyses. Phytopathology, 2019, 109, 1184-1197.	2.2	17
13	CO2 mass transfer and conversion to biomass in a horizontal gas–liquid photobioreactor. Chemical Engineering Research and Design, 2014, 92, 1891-1897.	5.6	14
14	Quantitative Risk Assessment Relating to the Inadvertent Presence of Peanut Allergens in Various Food Products. International Food Risk Analysis Journal, 2013, , 1.	0.8	13
15	Modelling interference between vectors of non-persistently transmitted plant viruses to identify effective control strategies. PLoS Computational Biology, 2021, 17, e1009727.	3.2	6
16	Can Winged Aphid Abundance Be a Predictor of Cucurbit Aphid-Borne Yellows Virus Epidemics in Melon Crop?. Viruses, 2020, 12, 911.	3. 3	3
17	<scp>PESO</scp> : a modelling framework to help improve management strategies for epidemics – application to sharka. EPPO Bulletin, 2017, 47, 231-236.	0.8	2