
Carlo Tuberoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6270281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Applied Microbiology, 1999, 29, 130-135.	2.2	782
2	Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chemistry, 2007, 103, 1494-1501.	8.2	368
3	Antimicrobial Activity of Tunisian Quince (Cydonia oblongaMiller) Pulp and Peel Polyphenolic Extracts. Journal of Agricultural and Food Chemistry, 2007, 55, 963-969.	5.2	264
4	Solid-phase extraction and high-performance liquid chromatographic determination of organic acids in honey. Journal of Chromatography A, 1994, 669, 59-64.	3.7	120
5	Antioxidant activity, color characteristics, total phenol content and general HPLC fingerprints of six Polish unifloral honey types. LWT - Food Science and Technology, 2014, 55, 124-130.	5.2	114
6	Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chemistry, 2010, 123, 1242-1251.	8.2	112
7	Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1614-1619.	2.8	109
8	Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chemistry, 2013, 140, 686-691.	8.2	107
9	Chemical Composition of Volatiles in Sardinian Myrtle (Myrtus communisL.) Alcoholic Extracts and Essential Oils. Journal of Agricultural and Food Chemistry, 2006, 54, 1420-1426.	5.2	93
10	Homogentisic Acid:  A Phenolic Acid as a Marker of Strawberry-Tree (Arbutus unedo) Honey. Journal of Agricultural and Food Chemistry, 1999, 47, 4064-4067.	5.2	87
11	Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biology, 2018, 17, 348-354.	9.0	83
12	Antioxidant profile of strawberry tree honey and its marker homogentisic acid in several models of oxidative stress. Food Chemistry, 2011, 129, 1045-1053.	8.2	81
13	Color evaluation of seventeen European unifioral honey types by means of spectrophotometrically determined CIE <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mo>s^a^—</mml:mo></mml:mrow></mml:msup></mml:mrow>s^a^—></mml:math>	nl:n sc ≫â^– ∋ubsup> <n< td=""><td>-aoil:mo>< nml:msubsup</td></n<>	-aoil:mo>< nml:msubsup
14	Food Chemistry, 2014, 145, 204-291. Methyl Syringate: A Chemical Marker of Asphodel (Asphodelus microcarpus Salzm. et Viv.) Monofloral Honey. Journal of Agricultural and Food Chemistry, 2009, 57, 3895-3900.	5.2	79
15	Floral Markers of Strawberry Tree (Arbutus unedo L.) Honey. Journal of Agricultural and Food Chemistry, 2010, 58, 384-389.	5.2	78
16	Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food Chemistry, 2015, 175, 29-35.	8.2	76
17	Characterisation by liquid chromatography-electrospray tandem mass spectrometry of anthocyanins in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Chromatography A, 2006, 1112, 232-240.	3.7	72
18	Activity of Polish unifloral honeys against pathogenic bacteria and its correlation with colour, phenolic content, antioxidant capacity and other parameters. Letters in Applied Microbiology, 2016, 62, 269-276.	2.2	67

#	Article	IF	CITATIONS
19	Antioxidant activity, cytotoxic activity and metabolic profiling of juices obtained from saffron (Crocus sativus L.) floral by-products. Food Chemistry, 2016, 199, 18-27.	8.2	64
20	Residues of azoxystrobin, fenhexamid and pyrimethanil in strawberry following field treatments and the effect of domestic washing. Food Additives and Contaminants, 2004, 21, 1065-1070.	2.0	62
21	Lumichrome and Phenyllactic Acid as Chemical Markers of Thistle (<i>Galactites tomentosa</i>) Tj ETQq1 1 0.78	4314 rgB1 5.2	- /Qverlock 1
22	Comparative Analysis of Polyphenolic Profiles and Antioxidant and Antimicrobial Activities of Tunisian Pome Fruit Pulp and Peel Aqueous Acetone Extracts. Journal of Agricultural and Food Chemistry, 2008, 56, 1084-1090.	5.2	57
23	Radical Scavenging Activity and LCâ€MS Metabolic Profiling of Petals, Stamens, and Flowers of <i>Crocus sativus</i> L Journal of Food Science, 2012, 77, C893-900.	3.1	54
24	Chemical Composition and Antioxidant, Antimicrobial, and Antifungal Activities of the Essential Oil of Achillea ligusticaAll Journal of Agricultural and Food Chemistry, 2005, 53, 10148-10153.	5.2	53
25	Multiresidue method for pesticide determination in wine by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 1992, 40, 817-819.	5.2	52
26	Extra virgin olive oil phenolic extracts counteract the pro-oxidant effect of dietary oxidized lipids in human intestinal cells. Food and Chemical Toxicology, 2016, 90, 171-180.	3.6	52
27	Headspace, volatile and semi-volatile patterns of Paliurus spina-christi unifloral honey as markers of botanical origin. Food Chemistry, 2009, 112, 239-245.	8.2	48
28	Flavonoid characterization and antioxidant activity of hydroalcoholic extracts from Achillea ligustica All Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 440-448.	2.8	48
29	Myrtle hydroalcoholic extracts obtained from different selections of Myrtus communis L Food Chemistry, 2007, 101, 806-811.	8.2	45
30	The role of p38 MAPK in the induction of intestinal inflammation by dietary oxysterols: modulation by wine phenolics. Food and Function, 2015, 6, 1218-1228.	4.6	43
31	Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids and Surfaces B: Biointerfaces, 2016, 146, 910-917.	5.0	43
32	Rotenone and Rotenoids in CubÃ Resins, Formulations, and Residues on Olives. Journal of Agricultural and Food Chemistry, 2004, 52, 288-293.	5.2	40
33	GC-ITMS Determination and Degradation of Captan during Winemaking. Journal of Agricultural and Food Chemistry, 2003, 51, 6761-6766.	5.2	39
34	Phenolic compounds present in Sardinian wine extracts protect against the production of inflammatory cytokines induced by oxysterols in CaCo-2 human enterocyte-like cells. Biochemical Pharmacology, 2013, 86, 138-145.	4.4	37
35	Evaluation of Antioxidant Potential of "Maltese Mushroom―(Cynomorium coccineum) by Means of Multiple Chemical and Biological Assays. Nutrients, 2013, 5, 149-161.	4.1	36
36	Phytochemical and physical–chemical analysis of Polish willow (Salix spp.) honey: Identification of the marker compounds. Food Chemistry, 2014, 145, 8-14.	8.2	35

#	Article	IF	CITATIONS
37	Characterization, phenolic profile, nitrogen compounds and antioxidant activity of Carignano wines. Journal of Food Composition and Analysis, 2017, 58, 60-68.	3.9	35
38	Cornflower (Centaurea cyanus L.) honey quality parameters: Chromatographic fingerprints, chemical biomarkers, antioxidant capacity and others. Food Chemistry, 2014, 142, 12-18.	8.2	34
39	Biological Activities of Aerial Parts Extracts of <i>Euphorbia characias</i> . BioMed Research International, 2016, 2016, 1-11.	1.9	30
40	Riboflavin and lumichrome in Dalmatian sage honey and other unifloral honeys determined by LC–DAD technique. Food Chemistry, 2012, 135, 1985-1990.	8.2	29
41	Molecular diversity of volatile compounds in rare willow (Salix spp.) honeydew honey: identification of chemical biomarkers. Molecular Diversity, 2010, 14, 237-248.	3.9	26
42	Volatile Compounds of <i>Asphodelus microcarpus</i> <scp>Salzm</scp> . et <scp>Viv</scp> . Honey Obtained by HSâ€&PME and USE Analyzed by GC/MS. Chemistry and Biodiversity, 2011, 8, 587-598.	2.1	25
43	Volatile Profile, Phytochemicals and Antioxidant Activity of Virgin Olive Oils from Croatian Autochthonous Varieties MaÅinjaÄa and Krvavica in Comparison with Italian Variety Leccino. Molecules, 2014, 19, 881-895.	3.8	25
44	High-performance liquid chromatographic determination of dinitroaniline herbicides in soil and water. Journal of Chromatography A, 1991, 585, 164-167.	3.7	24
45	Biodiversity of <i>Salix</i> spp. Honeydew and Nectar Honeys Determined by RPâ€HPLC and Evaluation of Their Antioxidant Capacity. Chemistry and Biodiversity, 2011, 8, 872-879.	2.1	24
46	Effect of the Epicuticular Waxes of Fruits and Vegetables on the Photodegradation of Rotenone. Journal of Agricultural and Food Chemistry, 2004, 52, 3451-3455.	5.2	22
47	The Volatile Profiles of a Rare Apple (<i>Malus domestica</i> <scp>Borkh.</scp>) Honey: Shikimic Acidâ€Pathway Derivatives, Terpenes, and Others. Chemistry and Biodiversity, 2013, 10, 1638-1652.	2.1	22
48	Phytochemicals and Other Characteristics of Croatian Monovarietal Extra Virgin Olive Oils from Oblica, Lastovka and Levantinka Varieties. Molecules, 2015, 20, 4395-4409.	3.8	22
49	Comprehensive Study of Mediterranean (Croatian) Propolis Peculiarity: Headspace, Volatiles, Antiâ€ <i>Varroa</i> â€Treatment Residue, Phenolics, and Antioxidant Properties. Chemistry and Biodiversity, 2016, 13, 210-218.	2.1	22
50	Volatiles, color characteristics and other physico–chemical parameters of commercial Moroccan honeys. Natural Product Research, 2016, 30, 286-292.	1.8	21
51	Sardinian honeys as sources of xanthine oxidase and tyrosinase inhibitors. Food Science and Biotechnology, 2018, 27, 139-146.	2.6	21
52	Nanotechnology for Natural Medicine: Formulation of Neem Oil Loaded Phospholipid Vesicles Modified with Argan Oil as a Strategy to Protect the Skin from Oxidative Stress and Promote Wound Healing. Antioxidants, 2021, 10, 670.	5.1	21
53	Phenolic Compounds, Antioxidant Activity, and Other Characteristics of Extra Virgin Olive Oils from Italian Autochthonous VarietiesTonda di Villacidro,Tonda di Cagliari,Semidana, andBosana. Journal of Chemistry, 2016, 2016, 1-7.	1.9	20

 $_{54}$ Evaluation of bioactive compounds and antioxidant capacity of edible feijoa (Acca sellowiana (O. Berg)) Tj ETQq0 $_{2.8}^{0.0}$ gBT /Oyerlock 10

#	Article	IF	CITATIONS
55	Metabolomic study of wild and cultivated caper (<i>Capparis spinosa</i> L.) from different areas of Sardinia and their comparative evaluation. Journal of Mass Spectrometry, 2016, 51, 716-728.	1.6	19
56	Screening of Polish Fir Honeydew Honey Using <scp>GC</scp> / <scp>MS</scp> , <scp> HPLC</scp> â€ <scp>DAD</scp> , and Physicalâ€Chemical Parameters: Benzene Derivatives and Terpenes as Chemical Markers. Chemistry and Biodiversity, 2017, 14, e1700179.	2.1	18
57	Contribution to the characterisation of honey-based Sardinian product abbamele: Volatile aroma composition, honey marker compounds and antioxidant activity. Food Chemistry, 2011, 124, 401-410.	8.2	17
58	Comparative Analysis of Tunisian Wild Crataegus azarolus (Yellow Azarole) and Crataegus monogyna (Red Azarole) Leaf, Fruit, and Traditionally Derived Syrup: Phenolic Profiles and Antioxidant and Antimicrobial Activities of the Aqueous-Acetone Extracts. Journal of Agricultural and Food Chemistry, 2013, 61, 130926133925000.	5.2	17
59	Screening of Coffea spp. honey by different methodologies: theobromine and caffeine as chemical markers. RSC Advances, 2014, 4, 60557-60562.	3.6	17
60	Phenolic Compounds, Volatiles and Antioxidant Capacity of White Myrtle Berry Liqueurs. Plant Foods for Human Nutrition, 2017, 72, 205-210.	3.2	17
61	Unlocking Phacelia tanacetifolia Benth. honey characterization through melissopalynological analysis, color determination and volatiles chemical profiling. Food Research International, 2018, 106, 243-253.	6.2	17
62	Effect of different technological processes on the chemical composition of myrtle (Myrtus communis) Tj ETQqO	0 0 ₃ rgBT /(Overlock 10 Tf
63	Characterization of Summer Savory (Satureja hortensis L.) Honey by Physico-Chemical Parameters and Chromatographic / Spectroscopic Techniques (GC-FID/MS, HPLC-DAD, UV/VIS and FTIR-ATR). Croatica Chemica Acta, 2015, 88, 15-22.	0.4	15
64	Traceability of Satsuma Mandarin (Citrus unshiu Marc.) Honey through Nectar/Honey-Sac/Honey Pathways of the Headspace, Volatiles, and Semi-Volatiles: Chemical Markers. Molecules, 2016, 21, 1302.	3.8	15
65	Antioxidant activity, color chromaticity coordinates, and chemical characterization of monofloral honeys from Morocco. International Journal of Food Properties, 2017, 20, 2016-2027.	3.0	15
66	Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts. BioMed Research International, 2018, 2018, 1-9.	1.9	15
67	Biogenic amines and other polar compounds in long aged oxidized Vernaccia di Oristano white wines. Food Research International, 2018, 111, 97-103.	6.2	15
68	Antioxidant Capacity and Chemical Profiles of <i>Satureja montana</i> L. Honey: Hotrienol and Syringyl Derivatives as Biomarkers. Chemistry and Biodiversity, 2015, 12, 1047-1056.	2.1	14
69	First characterization of Pompia intrea candied fruit: The headspace chemical profile, polar extract composition and its biological activities. Food Research International, 2019, 120, 620-630.	6.2	14
70	HR-LC-ESI-Orbitrap-MS-Based Metabolic Profiling Coupled with Chemometrics for the Discrimination of Different Echinops spinosus Organs and Evaluation of Their Antioxidant Activity. Antioxidants, 2022, 11, 453.	5.1	13
71	Chemical Composition of the Essential Oils of <i>Achillea millefolium</i> L. Isolated by Different Distillation Methods. Journal of Essential Oil Research, 2009, 21, 108-111.	2.7	12
72	Qualitative Profile and Quantitative Determination of Flavonoids from Crocus Sativus L. Petals by LC-MS/MS. Natural Product Communications, 2008, 3, 1934578X0800301.	0.5	11

#	Article	IF	CITATIONS
73	Relationship between markers of botanical origin in nectar and honey of the strawberry tree (Arbutus) Tj ETQq1 of Apicultural Research, 2015, 54, 342-349.	1 0.784314 1.5	4 rgBT /Ove 11
74	Evaluation of an innovative sheep cheese with antioxidant activity enriched with different thyme essential oil lecithin liposomes. LWT - Food Science and Technology, 2022, 154, 112808.	5.2	11
75	Separation of pirimicarb and its metabolites by high-performance liquid chromatography. Journal of Chromatography A, 1989, 478, 250-254.	3.7	10
76	Screening of Satureja subspicata Vis. Honey by HPLC-DAD, GC-FID/MS and UV/VIS: Prephenate Derivatives as Biomarkers. Molecules, 2016, 21, 377.	3.8	9
77	Exploiting combined absorption and front face fluorescence spectroscopy to chase classification: A proof of concept in the case of Sardinian red wines. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 214, 378-383.	3.9	8
78	Occurrence of acrylamide, hydroxymethylfurfural and furaldehyde as process contaminants in traditional breakfast cereals: "Bsissa― Food Control, 2021, 124, 107931.	5.5	8
79	Volatile compounds and antibacterial effect of commercial mint cultivars - chemotypes and safety. Industrial Crops and Products, 2021, 166, 113430.	5.2	8
80	Nitrogen compounds in Phacelia tanacetifolia Benth. honey: First time report on occurrence of (â^')-5- epi -lithospermoside, uridine, adenine and xanthine in honey. Food Chemistry, 2018, 255, 332-339.	8.2	7
81	Crucial Challenges in the Development of Green Extraction Technologies to Obtain Antioxidant Bioactive Compounds from Agro-industrial By–Products. Chemical and Biochemical Engineering Quarterly, 2021, 35, 105-138.	0.9	7
82	Ethnopharmacognosy of Echinops spinosus L. in North Africa: A Mini Review. Journal of Complementary Medicine Research, 2018, 9, 40.	0.3	7
83	High-performance liquid chromatographic determination of fenbutatin oxide and its persistence in peaches and nectarines. Journal of Agricultural and Food Chemistry, 1992, 40, 901-903.	5.2	6
84	Protective effects of azarole polyphenolic extracts against oxidative damage using in vitro biomolecular and cellular models. Industrial Crops and Products, 2016, 86, 239-250.	5.2	6
85	Evaluation of natural occurring bioactive compounds and antioxidant activity in Nuragus white wines. Food Research International, 2017, 99, 571-576.	6.2	6
86	LC-ESI/LTQ-Orbitrap-MS Based Metabolomics in Evaluation of Bitter Taste of Arbutus unedo Honey. Molecules, 2021, 26, 2765.	3.8	6
87	Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application. Pharmaceutics, 2022, 14, 910.	4.5	6
88	Euphorbia characias Extract: Inhibition of Skin Aging-Related Enzymes and Nanoformulation. Plants, 2022, 11, 1849.	3.5	6
89	The transformation of organic acids in Vernaccia wine during flor formation. Journal of Bioscience and Bioengineering, 1991, 72, 138-140.	0.9	5
90	GC-MS Fingerprints and Other Physico-chemical Characteristics of Rare Unifloral Prunus cerasus L. Honey. Natural Product Communications, 2013, 8, 1934578X1300800.	0.5	4

#	Article	IF	CITATIONS
91	Bioorganic Research of <i>Galactites tomentosa</i> Moench. Honey Extracts: Enantiomeric Purity of Chiral Marker 3â€Phenyllactic Acid. Chirality, 2014, 26, 405-410.	2.6	4
92	First Report on Rare Unifloral Honey of Endemic <i>Moltkia petraea</i> (<scp>Tratt</scp> .) <scp>Griseb</scp> . from Croatia: Detailed Chemical Screening and Antioxidant Capacity. Chemistry and Biodiversity, 2017, 14, e1600268.	2.1	4
93	Formulation and In Vitro Efficacy Assessment of Teucrium marum Extract Loading Hyalurosomes Enriched with Tween 80 and Clycerol. Nanomaterials, 2022, 12, 1096.	4.1	3
94	Chemical Profiles and Anti-inflammatory Activity of the Essential Oils from <i>Seseli gummiferum</i> and <i>Seseli corymbosum</i> subsp. <i>corymbosum</i> . Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	2
95	Influence of Environmental Conditions on the Composition of <i>Salvia desoleana</i> Atzei & Picci Oil. Journal of Essential Oil Research, 1999, 11, 635-641.	2.7	1
96	Insight into the Chemical Diversity of Late/Ice Harvest Gewürztraminer Wine. Chemistry and Biodiversity, 2018, 15, e1800254.	2.1	0
97	ANALYSIS OF POLYPHENOLIC COMPOSITION AND STABILITY OF MACISTRAL PREPARATION BASED ON SALVIAE OFFICINALIS FOLIUM. Acta Poloniae Pharmaceutica, 2020, 77, 131-143.	0.1	0
98	Virgin oil production fron novel and traditional oilseed crops grown in Central Italy: natural constituents and antioxidant activity. Journal of Agricultural Economics, 2015, , .	0.3	0