
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269744/publications.pdf Version: 2024-02-01

WELFENC

#	Article	IF	CITATIONS
1	Luminescent Chemodosimeters for Bioimaging. Chemical Reviews, 2013, 113, 192-270.	23.0	2,049
2	Upconversion Luminescent Materials: Advances and Applications. Chemical Reviews, 2015, 115, 395-465.	23.0	1,815
3	Sub-10 nm Hexagonal Lanthanide-Doped NaLuF ₄ Upconversion Nanocrystals for Sensitive Bioimaging in Vivo. Journal of the American Chemical Society, 2011, 133, 17122-17125.	6.6	768
4	Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature. Nature Communications, 2016, 7, 10437.	5.8	750
5	Ultrasensitive Near-Infrared Fluorescence-Enhanced Probe for <i>in Vivo</i> Nitroreductase Imaging. Journal of the American Chemical Society, 2015, 137, 6407-6416.	6.6	408
6	Blue-Emissive Upconversion Nanoparticles for Low-Power-Excited Bioimaging in Vivo. Journal of the American Chemical Society, 2012, 134, 5390-5397.	6.6	390
7	Anti-Stokes shift luminescent materials for bio-applications. Chemical Society Reviews, 2017, 46, 1025-1039.	18.7	385
8	A Cyanine-Modified Nanosystem for <i>in Vivo</i> Upconversion Luminescence Bioimaging of Methylmercury. Journal of the American Chemical Society, 2013, 135, 9869-9876.	6.6	279
9	Core–shell Fe3O4@NaLuF4:Yb,Er/Tm nanostructure for MRI, CT and upconversion luminescence tri-modality imaging. Biomaterials, 2012, 33, 4618-4627.	5.7	271
10	The biosafety of lanthanide upconversion nanomaterials. Chemical Society Reviews, 2015, 44, 1509-1525.	18.7	262
11	Upconversion luminescence imaging of cells and small animals. Nature Protocols, 2013, 8, 2033-2044.	5.5	253
12	Gd3+ complex-modified NaLuF4-based upconversion nanophosphors for trimodality imaging of NIR-to-NIR upconversion luminescence, X-Ray computed tomography and magnetic resonance. Biomaterials, 2012, 33, 5394-5405.	5.7	251
13	Versatile Spectral and Lifetime Multiplexing Nanoplatform with Excitation Orthogonalized Upconversion Luminescence. ACS Nano, 2017, 11, 3289-3297.	7.3	237
14	Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection. Accounts of Chemical Research, 2017, 50, 32-40.	7.6	213
15	Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nature Communications, 2020, 11, 4.	5.8	205
16	Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nature Communications, 2018, 9, 2176.	5.8	203
17	Upconversionâ€Nanophosphorâ€Based Functional Nanocomposites. Advanced Materials, 2013, 25, 5287-5303.	11.1	202
18	Rareâ€Earth Nanoparticles with Enhanced Upconversion Emission and Suppressed Rareâ€Earthâ€Ion Leakage. Chemistry - A European Journal, 2012, 18, 5558-5564.	1.7	195

#	Article	IF	CITATIONS
19	Ratiometric nanothermometer in vivo based on tripletÂsensitized upconversion. Nature Communications, 2018, 9, 2698.	5.8	194
20	Mitochondria-Targeted Near-Infrared Fluorescent Off–On Probe for Selective Detection of Cysteine in Living Cells and <i>in Vivo</i> . ACS Applied Materials & Interfaces, 2015, 7, 27968-27975.	4.0	189
21	High-sensitivity imaging of time-domain near-infrared light transducer. Nature Photonics, 2019, 13, 525-531.	15.6	166
22	Cationic Polyfluorenes with Phosphorescent Iridium(III) Complexes for Timeâ€Resolved Luminescent Biosensing and Fluorescence Lifetime Imaging. Advanced Functional Materials, 2013, 23, 3268-3276.	7.8	165
23	Hydrothermal synthesis of NaLuF4:153Sm,Yb,Tm nanoparticles and their application in dual-modality upconversion luminescence and SPECT bioimaging. Biomaterials, 2013, 34, 774-783.	5.7	159
24	Iridiumâ€Complexâ€Modified Upconversion Nanophosphors for Effective LRET Detection of Cyanide Anions in Pure Water. Advanced Functional Materials, 2012, 22, 2667-2672.	7.8	157
25	Mussel-Inspired Polydopamine-Coated Lanthanide Nanoparticles for NIR-II/CT Dual Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 26674-26683.	4.0	118
26	Nearâ€infrared Upconversion Chemodosimeter for In Vivo Detection of Cu ²⁺ in Wilson Disease. Advanced Materials, 2016, 28, 6625-6630.	11.1	115
27	Polyphosphoric acid capping radioactive/upconverting NaLuF4:Yb,Tm,153Sm nanoparticles for blood pool imaging inÂvivo. Biomaterials, 2013, 34, 9535-9544.	5.7	99
28	Optimization of Prussian Blue Coated NaDyF ₄ : <i>x</i> %Lu Nanocomposites for Multifunctional Imagingâ€Guided Photothermal Therapy. Advanced Functional Materials, 2016, 26, 5120-5130.	7.8	98
29	Biodistribution of sub-10Ânm PEG-modified radioactive/upconversion nanoparticles. Biomaterials, 2013, 34, 7127-7134.	5.7	95
30	High-Contrast Visualization of Upconversion Luminescence in Mice Using Time-Gating Approach. Analytical Chemistry, 2016, 88, 3449-3454.	3.2	88
31	Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Nanoscale, 2017, 9, 1964-1971.	2.8	87
32	Yolk–Shell Upconversion Nanocomposites for LRET Sensing of Cysteine/Homocysteine. ACS Applied Materials & Interfaces, 2014, 6, 11190-11197.	4.0	86
33	Nd ³⁺ -doped LiYF ₄ nanocrystals for bio-imaging in the second near-infrared window. Journal of Materials Chemistry B, 2016, 4, 87-95.	2.9	83
34	An Nd ³⁺ -sensitized upconversion nanophosphor modified with a cyanine dye for the ratiometric upconversion luminescence bioimaging of hypochlorite. Nanoscale, 2015, 7, 4105-4113.	2.8	79
35	Recent advances in the optimization and functionalization of upconversion nanomaterials for in vivo bioapplications. NPG Asia Materials, 2013, 5, e75-e75.	3.8	75
36	Nd ³⁺ -Sensitized Upconversion Nanostructure as a Dual-Channel Emitting Optical Probe for Near Infrared-to-Near Infrared Fingerprint Imaging. Inorganic Chemistry, 2016, 55, 10278-10283.	1.9	75

#	Article	IF	CITATIONS
37	Fluorescence lifetime imaging of upper gastrointestinal pH <i>in vivo</i> with a lanthanide based near-infrared <i>Ï,,</i> probe. Chemical Science, 2019, 10, 4227-4235.	3.7	72
38	Upconversion nanoparticles dramatically promote plant growth without toxicity. Nano Research, 2012, 5, 770-782.	5.8	68
39	A water-dispersible dye-sensitized upconversion nanocomposite modified with phosphatidylcholine for lymphatic imaging. Chemical Communications, 2016, 52, 13389-13392.	2.2	67
40	Energy Transfer Highway in Nd ³⁺ -Sensitized Nanoparticles for Efficient near-Infrared Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 18540-18548.	4.0	65
41	A mitochondrial-targeted ratiometric probe for detecting intracellular H2S with high photostability. Chinese Chemical Letters, 2021, 32, 1799-1802.	4.8	65
42	Cyclometallated ruthenium complex-modified upconversion nanophosphors for selective detection of Hg ²⁺ ions in water. Nanoscale, 2014, 6, 1020-1028.	2.8	62
43	Near-infrared in vivo bioimaging using a molecular upconversion probe. Chemical Communications, 2016, 52, 7466-7469.	2.2	61
44	Dual Near-Infrared-Emissive Luminescent Nanoprobes for Ratiometric Luminescent Monitoring of ClO [–] in Living Organisms. ACS Applied Materials & Interfaces, 2019, 11, 15298-15305.	4.0	59
45	Hybrid Nanoclusters for Near-Infrared to Near-Infrared Upconverted Persistent Luminescence Bioimaging. ACS Applied Materials & Interfaces, 2017, 9, 32583-32590.	4.0	58
46	Ratiometric Monitoring of Intracellular Drug Release by an Upconversion Drug Delivery Nanosystem. ACS Applied Materials & Interfaces, 2015, 7, 12278-12286.	4.0	57
47	Biodegradable Inorganic Upconversion Nanocrystals for <i>In Vivo</i> Applications. ACS Nano, 2020, 14, 16672-16680.	7.3	55
48	Visible-light-excited and europium-emissive nanoparticles for highly-luminescent bioimaging inÂvivo. Biomaterials, 2014, 35, 5830-5839.	5.7	53
49	Dye-sensitized upconversion nanocomposites for ratiometric semi-quantitative detection of hypochlorite <i>in vivo</i> . Nanoscale, 2019, 11, 2959-2965.	2.8	52
50	Near-Infrared Lanthanide-Doped Nanoparticles for a Low Interference Lateral Flow Immunoassay Test. ACS Applied Materials & Interfaces, 2020, 12, 4358-4365.	4.0	51
51	Easy-to-Use Colorimetric Cyanine Probe for the Detection of Cu ²⁺ in Wilson's Disease. ACS Applied Materials & Interfaces, 2018, 10, 20377-20386.	4.0	50
52	Development of Polyene-Bridged Hybrid Rhodamine Fluorophores for High-Resolution NIR-II Imaging. , 2019, 1, 418-424.		50
53	Dye-Assembled Upconversion Nanocomposite for Luminescence Ratiometric in Vivo Bioimaging of Copper Ions. ACS Applied Materials & Interfaces, 2019, 11, 430-436.	4.0	50
54	An NIRâ€ i l Photothermally Triggered "Oxygen Bomb―for Hypoxic Tumor Programmed Cascade Therapy. Advanced Materials, 2022, 34, .	11.1	48

#	Article	IF	CITATIONS
55	Highly Enhanced Cooperative Upconversion Luminescence through Energy Transfer Optimization and Quenching Protection. ACS Applied Materials & Interfaces, 2016, 8, 17894-17901.	4.0	46
56	Lanthanide-based nanocrystals as dual-modal probes for SPECT and X-ray CT imaging. Biomaterials, 2014, 35, 4699-4705.	5.7	45
57	InÂvivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules. Biomaterials, 2017, 112, 10-19.	5.7	44
58	Nearâ€Infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. Advanced Science, 2019, 6, 1801834.	5.6	42
59	Lanthanide-Doped Nanoparticles with Upconversion and Downshifting Near-Infrared Luminescence for Bioimaging. Inorganic Chemistry, 2019, 58, 9351-9357.	1.9	41
60	Ultrabright NIRâ€II Emissive Polymer Dots for Metastatic Ovarian Cancer Detection. Advanced Science, 2021, 8, 2000441.	5.6	39
61	Luminescence Lifetime–Based In Vivo Detection with Responsive Rare Earth–Dye Nanocomposite. Small, 2019, 15, e1904487.	5.2	37
62	Ln ³⁺ -doped nanoparticles with enhanced NIR-II luminescence for lighting up blood vessels in mice. Nanoscale, 2020, 12, 8248-8254.	2.8	37
63	Customized Photothermal Therapy of Subcutaneous Orthotopic Cancer by Multichannel Luminescent Nanocomposites. Advanced Materials, 2021, 33, e2008615.	11.1	36
64	Synthesis of NaYF 4 :Nd@NaLuF 4 @SiO 2 @PS colloids for fluorescence imaging in the second biological window. Journal of Rare Earths, 2018, 36, 113-118.	2.5	32
65	Point-of-care Ratiometric Fluorescence Imaging of Tissue for the Diagnosis of Ovarian Cancer. Theranostics, 2019, 9, 4597-4607.	4.6	32
66	Eu ²⁺ /Eu ³⁺ -Based Smart Duplicate Responsive Stimuli and Time-gated Nanohybrid for Optical Recording and Encryption. ACS Applied Materials & Interfaces, 2019, 11, 1247-1253.	4.0	27
67	An efficient dye-sensitized NIR emissive lanthanide nanomaterial and its application in fluorescence-guided peritumoral lymph node dissection. Nanoscale, 2018, 10, 12573-12581.	2.8	26
68	Engineering of monodisperse core–shell up-conversion dendritic mesoporous silica nanocomposites with a tunable pore size. Nanoscale, 2020, 12, 5075-5083.	2.8	25
69	Time-Gated Ratiometric Detection with the Same Working Wavelength To Minimize the Interferences from Photon Attenuation for Accurate <i>in Vivo</i> Detection. ACS Central Science, 2019, 5, 299-307.	5.3	24
70	Intraperitoneal Administration of Biointerface amouflaged Upconversion Nanoparticles for Contrast Enhanced Imaging of Pancreatic Cancer. Advanced Functional Materials, 2016, 26, 8631-8642.	7.8	23
71	Highly efficient BODIPY-doped upconversion nanoparticles for deep-red luminescence bioimaging <i>in vivo</i> . Chemical Communications, 2021, 57, 1518-1521.	2.2	23
72	Measurement of Temperature Distribution at the Nanoscale with Luminescent Probes Based on Lanthanide Nanoparticles and Quantum Dots. ACS Applied Materials & Interfaces, 2020, 12, 52393-52401.	4.0	21

#	Article	IF	CITATIONS
73	Luminescence interference-free lifetime nanothermometry pinpoints in vivo temperature. Science China Chemistry, 2021, 64, 974-984.	4.2	21
74	Enhanced Blue Afterglow through Molecular Fusion for Bioâ€applications. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
75	Quantitative Mapping of Liver Hypoxia in Living Mice Using Timeâ€Resolved Wideâ€Field Phosphorescence Lifetime Imaging. Advanced Science, 2020, 7, 1902929.	5.6	20
76	Significantly Enhanced Afterglow Brightness via Intramolecular Energy Transfer. , 2021, 3, 713-720.		20
77	Influence on the Apparent Luminescent Lifetime of Rare-Earth Upconversion Nanoparticles by Quenching the Sensitizer's Excited State for Hypochlorous Acid Detection and Bioimaging. ACS Applied Materials & Interfaces, 2022, 14, 14004-14011.	4.0	20
78	Engineering single-molecule fluorescence with asymmetric nano-antennas. Light: Science and Applications, 2021, 10, 79.	7.7	18
79	Erâ€Based Luminescent Nanothermometer to Explore the Realâ€Time Temperature of Cells under External Stimuli. Small, 2022, 18, e2107963.	5.2	15
80	Intra-arterial infusion of PEGylated upconversion nanophosphors to improve the initial uptake by tumors in vivo. RSC Advances, 2014, 4, 23580.	1.7	14
81	In vivo biodistribution and passive accumulation of upconversion nanoparticles in colorectal cancer models via intraperitoneal injection. RSC Advances, 2017, 7, 31588-31596.	1.7	13
82	Tuning the Upconversion Efficiency and Spectrum of Upconversion Nanoparticles through Surface Decorating of an Organic Dye. Inorganic Chemistry, 2019, 58, 14490-14497.	1.9	13
83	A mitochondrion-targeting fluorescent probe for hypochlorite anion in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 240, 118564.	2.0	13
84	Reversible Ratiometric Probe Combined with the Time-Gated Method for Accurate <i>In Vivo</i> Gastrointestinal pH Sensing. ACS Applied Materials & Interfaces, 2020, 12, 25557-25564.	4.0	13
85	Wide-Range Time-Dependent Color-Tunable Light-Response Afterglow Materials <i>via</i> Absorption Compensation for Advanced Information Encryption. ACS Applied Materials & Interfaces, 2022, 14, 11681-11689.	4.0	13
86	NIR-II emitting rare-earth nanoparticles for a lateral flow immunoassay in hemolysis. Sensors and Actuators B: Chemical, 2021, 345, 130380.	4.0	12
87	Amphiphilic PEGylated Lanthanide-Doped Upconversion Nanoparticles for Significantly Passive Accumulation in the Peritoneal Metastatic Carcinomatosis Models Following Intraperitoneal Administration. ACS Biomaterials Science and Engineering, 2017, 3, 2176-2184.	2.6	11
88	Gonadotropin-Releasing Hormone Receptor-Targeted Near-Infrared Fluorescence Probe for Specific Recognition and Localization of Peritoneal Metastases of Ovarian Cancer. Frontiers in Oncology, 2020, 10, 266.	1.3	11
89	Time–oxygen & light indicating via photooxidation mediated up-conversion. Journal of Materials Chemistry C, 2016, 4, 9986-9992.	2.7	10
90	Enhanced Peroxidaseâ€mimicking Activity of Plasmonic Goldâ€modified Mn ₃ O ₄ Nanocomposites through Photoexcited Hot Electron Transfer. Chemistry - an Asian Journal, 2021, 16, 1603-1607.	1.7	10

#	Article	IF	CITATIONS
91	Chemodosimeter functionalized magnetic silica yolk–shell nanocomposite for sensing and removal of Hg2+. RSC Advances, 2014, 4, 20252.	1.7	8
92	Quantum Yield Measurements of Photochemical Reaction-Based Afterglow Luminescence Materials. Journal of Physical Chemistry Letters, 2021, 12, 9455-9462.	2.1	8
93	Coumarin-based fluorescent probes toward viscosity in mitochondrion/lysosome. Analytical Biochemistry, 2022, 652, 114752.	1.1	8
94	Yb-Based Nanoparticles with the Same Excitation and Emission Wavelength for Sensitive in Vivo Biodetection. Analytical Chemistry, 2020, 92, 2027-2033.	3.2	7
95	Enhanced Blue Afterglow through Molecular Fusion for Bioâ€applications. Angewandte Chemie, 2022, 134, .	1.6	7
96	Monitoring energy distribution of nonradiative energy transfer and reabsorption process in an upconversion nanoparticle detection system. Journal of Luminescence, 2019, 210, 175-181.	1.5	6
97	Afterglow Implant for Arterial Embolization and Intraoperative Imaging. Chemistry - A European Journal, 2022, 28, .	1.7	6
98	Steric hindrance boosted upconversion for low-power imaging in vivo. Journal of Luminescence, 2020, 218, 116837.	1.5	5
99	A facile strategy for the synthesis of a NaREF ₄ -gold nanocomposite as a dual-modal bioimaging agent. RSC Advances, 2017, 7, 21625-21629.	1.7	4
100	Self-Assembly of Heterogeneous Structured Rare-Earth Nanocrystals Controlled by Selective Crystal Etching and Growth for Optical Encoding. ACS Applied Nano Materials, 2019, 2, 3518-3525.	2.4	3
101	Biosensing and Bioimaging: Cationic Polyfluorenes with Phosphorescent Iridium(III) Complexes for Timeâ€Resolved Luminescent Biosensing and Fluorescence Lifetime Imaging (Adv. Funct. Mater. 26/2013). Advanced Functional Materials, 2013, 23, 3250-3250.	7.8	2