
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269607/publications.pdf Version: 2024-02-01

ROHDAN KDIREK

#	Article	IF	CITATIONS
1	Cobalt-bearing copper slags from Luanshya (Zambian Copperbelt): Mineralogy, geochemistry, and potential recovery of critical metals. Journal of Geochemical Exploration, 2022, 237, 106987.	1.5	12
2	The Origin of Synchysite-(Ce) and Sources of Rare Earth Elements in the Rožná Uranium Deposit, Czech Republic. Minerals (Basel, Switzerland), 2022, 12, 690.	0.8	2
3	Raman mapping of coal halos induced by uranium mineral radiation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118996.	2.0	4
4	Metal(loid)s remobilization and mineralogical transformations in smelter-polluted savanna soils under simulated wildfire conditions. Journal of Environmental Management, 2021, 293, 112899.	3.8	8
5	Experimental pyrolysis of metalliferous coal: A contribution to the understanding of pyrometamorphism of organic matter and sulfides during coal waste heaps fires. International Journal of Coal Geology, 2021, 245, 103817.	1.9	1
6	Depicting the historical pollution in a Pb–Zn mining/smelting site in Kabwe (Zambia) using tree rings. Journal of African Earth Sciences, 2021, 181, 104246.	0.9	14
7	Mineralogy of Ga- and Ge-bearing metallurgical slags from Tsumeb, Namibia. Mineralogical Magazine, 2021, 85, 879-889.	0.6	4
8	Vanadium-rich slags from the historical processing of Zn–Pb–V ores at Berg Aukas (Namibia): Mineralogy and environmental stability. Applied Geochemistry, 2020, 114, 104473.	1.4	7
9	Uptake of trace elements and isotope fractionation of Cu and Zn by birch (Betula pendula) growing on mineralized coal waste pile. Applied Geochemistry, 2020, 122, 104741.	1.4	12
10	Vanadium in slags from smelting of African Pb-Zn vanadate ores: Mineralogy, extractability and potential recovery. Journal of Geochemical Exploration, 2020, 218, 106631.	1.5	13
11	Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere, 2020, 260, 127642.	4.2	33
12	The potential wildfire effects on mercury remobilization from topsoils and biomass in a smelter-polluted semi-arid area. Chemosphere, 2020, 247, 125972.	4.2	7
13	Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia. Environment International, 2019, 124, 205-215.	4.8	44
14	Tracing the metal dynamics in semi-arid soils near mine tailings using stable Cu and Pb isotopes. Chemical Geology, 2019, 515, 61-76.	1.4	39
15	Soil contamination near the Kabwe Pb-Zn smelter in Zambia: Environmental impacts and remediation measures proposal. Journal of Geochemical Exploration, 2019, 197, 159-173.	1.5	48
16	Thallium contamination of desert soil in Namibia: Chemical, mineralogical and isotopic insights. Environmental Pollution, 2018, 239, 272-280.	3.7	41
17	Hydrocarbon condensates and argillites in the EliÅjka Mine burnt coal waste heap of the Žacléř coal district (Czech Republic): Products of high- and low-temperature stages of self-ignition. International Journal of Coal Geology, 2018, 190, 146-165.	1.9	9
18	Copper isotopic record in soils and tree rings near a copper smelter, Copperbelt, Zambia. Science of the Total Environment, 2018, 621, 9-17.	3.9	31

#	Article	IF	CITATIONS
19	Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia. Chemical Geology, 2018, 493, 121-135.	1.4	40
20	Geochemistry and pH control of seepage from Ni-Cu rich mine tailings at Selebi Phikwe, Botswana. Environmental Monitoring and Assessment, 2018, 190, 482.	1.3	10
21	Geochemistry and environmental impact of neutral drainage from an uraniferous coal waste heap. Journal of Geochemical Exploration, 2018, 191, 1-21.	1.5	7
22	The impact of wetland on neutral mine drainage from mining wastes at Luanshya in the Zambian Copperbelt in the framework of climate change. Environmental Science and Pollution Research, 2018, 25, 28961-28972.	2.7	9
23	Characterization of Fe-Mn concentric nodules from Luvisol irrigated by mine water in a semi-arid agricultural area. Geoderma, 2017, 299, 32-42.	2.3	37
24	The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications. Journal of Environmental Management, 2017, 187, 178-186.	3.8	68
25	Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic. International Journal of Coal Geology, 2017, 173, 158-175.	1.9	21
26	Geochemical history of a Lower Miocene lake, the Cypris Formation, Sokolov Basin, Czech Republic. Journal of Paleolimnology, 2017, 58, 169-190.	0.8	9
27	Geochemistry, mineralogy, and isotope composition of Pb, Zn, and Cu in primary ores, gossan and barren ferruginous crust from the Perkoa base metal deposit, Burkina Faso. Journal of Geochemical Exploration, 2016, 168, 49-64.	1.5	14
28	Radiation- and self-ignition induced alterations of Permian uraniferous coal from the abandoned Novátor mine waste dump (Czech Republic). International Journal of Coal Geology, 2016, 168, 162-178.	1.9	17
29	Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas. Science of the Total Environment, 2016, 563-564, 329-339.	3.9	29
30	Reactivity of fly ash from copper smelters in an Oxisol: implications for smelter-polluted soil systems in the tropics. Journal of Soils and Sediments, 2016, 16, 115-124.	1.5	9
31	Contamination of soil and grass in the Tsumeb smelter area, Namibia: Modeling of contaminants dispersion and ground geochemical verification. Applied Geochemistry, 2016, 64, 75-91.	1.4	33
32	Trace Elements and the Lead Isotopic Record in Marula (Sclerocarya birrea) Tree Rings and Soils Near the Tsumeb Smelter, Namibia. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	19
33	The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa. Precambrian Research, 2015, 270, 300-317.	1.2	27
34	Mercury in soil profiles from metal mining and smelting areas in Namibia and Zambia: distribution and potential sources. Journal of Soils and Sediments, 2015, 15, 648-658.	1.5	20
35	Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 2014, 144, 427-432.	1.5	22
36	Prioritising environmental risk at the regional scale by a GIS aided technique: The Zambian Copperbelt Province case study. Journal of Geochemical Exploration, 2014, 144, 433-442.	1.5	21

#	Article	IF	CITATIONS
37	Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt). Science of the Total Environment, 2014, 473-474, 117-124.	3.9	45
38	Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. Journal of Geochemical Exploration, 2014, 144, 391-408.	1.5	33
39	Dust from Zambian smelters: mineralogy and contaminant bioaccessibility. Environmental Geochemistry and Health, 2014, 36, 919-933.	1.8	41
40	Geochemistry of mine tailings and behavior of arsenic at Kombat, northeastern Namibia. Environmental Monitoring and Assessment, 2014, 186, 4891-4903.	1.3	18
41	Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). Journal of Geochemical Exploration, 2012, 113, 68-75.	1.5	81
42	Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. Journal of Geochemical Exploration, 2012, 112, 174-188.	1.5	57
43	Leaching of metals from copper smelter flue dust (Mufulira, Zambian Copperbelt). Applied Geochemistry, 2011, 26, S263-S266.	1.4	60
44	Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma, 2011, 164, 73-84.	2.3	92
45	Attenuation of dissolved metals in neutral mine drainage in the Zambian Copperbelt. Environmental Monitoring and Assessment, 2011, 172, 287-299.	1.3	25
46	Lead Isotopic and Metallic Pollution Record in Tree Rings from the Copperbelt Mining–Smelting Area, Zambia. Water, Air, and Soil Pollution, 2011, 216, 657-668.	1.1	53
47	The Extent of Arsenic and of Metal Uptake by Aboveground Tissues of Pteris vittata and Cyperus involucratus Growing in Copper- and Cobalt-Rich Tailings of the Zambian Copperbelt. Archives of Environmental Contamination and Toxicology, 2011, 61, 228-242.	2.1	11
48	Deep, subsurface microflora after excavation respiration and biomass and its potential role in degradation of fossil organic matter. Folia Microbiologica, 2011, 56, 389-396.	1.1	23
49	Potential human health risks associated with historic ore processing at Berg Aukas, Grootfontein area, Namibia. Journal of African Earth Sciences, 2010, 58, 634-647.	0.9	21
50	Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. Journal of Geochemical Exploration, 2010, 104, 69-86.	1.5	89
51	Characterization of organic matter in dusts and fluvial sediments from exposed areas of downtown Prague, Czech Republic. International Journal of Coal Geology, 2009, 80, 69-86.	1.9	17
52	The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization. Mineralium Deposita, 2009, 44, 99-128.	1.7	52
53	Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Applied Geochemistry, 2009, 24, 1-15.	1.4	147
54	Multiple Sources of Metals of Mineralization in Lower Cambrian Black Shales of South China: Evidence from Geochemical and Petrographic Study. Resource Geology, 2008, 58, 25-42.	0.3	57

#	Article	IF	CITATIONS
55	Graphitization of organic matter and fluidâ€deposited graphite in Palaeoproterozoic (Birimian) black shales of the Kayaâ€Goren greenstone belt (Burkina Faso, West Africa). Journal of Metamorphic Geology, 2008, 26, 937-958.	1.6	46
56	Organic geochemistry and petrology of barren and Mo–Ni–PGE mineralized marine black shales of the Lower Cambrian Niutitang Formation (South China). International Journal of Coal Geology, 2007, 72, 240-256.	1.9	76
57	Tin–polymetallic sulfide deposits in the eastern part of the Dachang tin field (South China) and the role of black shales in their origin. Mineralium Deposita, 2003, 38, 39-66.	1.7	27
58	Anhydrite-bearing rocks from the Rožná district (Moldanubian zone, Czech Republic): high-grade metamorphosed exhalites?. Mineralium Deposita, 2002, 37, 465-479.	1.7	3
59	Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Pribram, Czech Republic; sources, radiation-induced alteration, and relation to mineralization. Economic Geology, 1999, 94, 1093-1114.	1.8	52
60	Laboratory Oxidation of Fossil Organic Matter Studiedby in situ Infrared Spectroscopy, Rock-Eval Pyrolysis and Pyrolysis-Gas Chromatography-Mass Spectrometry. Collection of Czechoslovak Chemical Communications, 1997, 62, 364-374.	1.0	7
61	Barite-hyalophane sulfidic ores at Rozna, Bohemian Massif, Czech Republic; metamorphosed black shale-hosted submarine exhalative mineralization. Economic Geology, 1996, 91, 14-35.	1.8	17
62	Gas Chromatographic and Mass Spectrometric Characterization of Pyrolysis Products of Fossil Organic Matter from Localities of the Czech Republic. Collection of Czechoslovak Chemical Communications, 1996, 61, 1158-1166.	1.0	3
63	The role of organic matter in the metallogeny of the Bohemian Massif. Economic Geology, 1989, 84, 1525-1540.	1.8	26