Max Keller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269571/publications.pdf

Version: 2024-02-01

471509 44 881 17 h-index citations papers

g-index 45 45 45 708 citing authors all docs docs citations times ranked

526287

27

#	Article	IF	CITATIONS
1	Structure-Based Design of High-Affinity Fluorescent Probes for the Neuropeptide Y Y ₁ Receptor. Journal of Medicinal Chemistry, 2022, 65, 4832-4853.	6.4	10
2	Receptor-specific recognition of NPY peptides revealed by structures of NPY receptors. Science Advances, 2022, 8, eabm1232.	10.3	22
3	Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M ₄ muscarinic receptors?. Open Biology, 2022, 12, .	3 . 6	6
4	BRET- and fluorescence anisotropy-based assays for real-time monitoring of ligand binding to M2 muscarinic acetylcholine receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118930.	4.1	8
5	Dibenzodiazepinone-type muscarinic receptor antagonists conjugated to basic peptides: Impact of the linker moiety and unnatural amino acids on M2R selectivity. European Journal of Medicinal Chemistry, 2021, 213, 113159.	5 . 5	5
6	N-Terminus to Arginine Side-Chain Cyclization of Linear Peptidic Neuropeptide Y Y ₄ Receptor Ligands Results in Picomolar Binding Constants. Journal of Medicinal Chemistry, 2021, 64, 16746-16769.	6.4	11
7	An Alkyne-functionalized Arginine for Solid-Phase Synthesis Enabling "Bioorthogonal―Peptide Conjugation. ACS Medicinal Chemistry Letters, 2020, 11, 334-339.	2.8	4
8	Fluorescence Labeling of Neurotensin(8–13) via Arginine Residues Gives Molecular Tools with High Receptor Affinity. ACS Medicinal Chemistry Letters, 2020, 11, 16-22.	2.8	17
9	Fluorescent H ₂ Receptor Squaramide-Type Antagonists: Synthesis, Characterization, and Applications. ACS Medicinal Chemistry Letters, 2020, 11, 1521-1528.	2.8	5
10	Differently fluorescence-labelled dibenzodiazepinone-type muscarinic acetylcholine receptor ligands with high M ₂ R affinity. RSC Medicinal Chemistry, 2020, 11, 823-832.	3.9	10
11	Red-Emitting Dibenzodiazepinone Derivatives as Fluorescent Dualsteric Probes for the Muscarinic Acetylcholine M2 Receptor. Journal of Medicinal Chemistry, 2020, 63, 4133-4154.	6.4	13
12	Oligopeptides as Neuropeptide Y Y ₄ Receptor Ligands: Identification of a High-Affinity Tetrapeptide Agonist and a Hexapeptide Antagonist. Journal of Medicinal Chemistry, 2020, 63, 8198-8215.	6.4	11
13	Argininamide-type neuropeptide YY1 receptor antagonists: the nature of Nï‰-carbamoyl substituents determines Y1R binding mode and affinity. RSC Medicinal Chemistry, 2020, 11, 274-282.	3.9	0
14	Ga-68 labeling of stable neurotensin (8-13) analogs via carbamoy lated arginine residues gives NTS 1 R PET ligands with promising in vitro profile. , 2020, 59, .		0
15	18F-labelled triazolyl-linked argininamides targeting the neuropeptide YY1R for PET imaging of mammary carcinoma. Scientific Reports, 2019, 9, 12990.	3.3	9
16	Conjugation of Short Peptides to Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Determines M ₂ R Selectivity. Journal of Medicinal Chemistry, 2019, 62, 5358-5369.	6.4	13
17	Modifications at Arg and Ile Give Neurotensin(8–13) Derivatives with High Stability and Retained NTS ₁ Receptor Affinity. ACS Medicinal Chemistry Letters, 2019, 10, 960-965.	2.8	14
18	Initial Characterization of Transgenic Mice Overexpressing Human Histamine H ₂ Receptors. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 129-141.	2.5	40

#	Article	IF	CITATIONS
19	Photochromic peptidic NPY Y ₄ receptor ligands. Organic and Biomolecular Chemistry, 2019, 17, 2467-2478.	2.8	13
20	Highly Potent, Stable, and Selective Dimeric Hetarylpropylguanidine-Type Histamine H ₂ Receptor Agonists. ACS Omega, 2018, 3, 2865-2882.	3.5	24
21	Structural basis of ligand binding modes at the neuropeptide YY1 receptor. Nature, 2018, 556, 520-524.	27.8	100
22	Prototypic ¹⁸ F-Labeled Argininamide-Type Neuropeptide Y Y ₁ R Antagonists as Tracers for PET Imaging of Mammary Carcinoma. ACS Medicinal Chemistry Letters, 2017, 8, 304-309.	2.8	11
23	Fluorescence- and Radiolabeling of [Lys ⁴ ,Nle ^{17,30}]hPP Yields Molecular Tools for the NPY Y ₄ Receptor. Bioconjugate Chemistry, 2017, 28, 1291-1304.	3.6	12
24	Radiolabeled Dibenzodiazepinone-Type Antagonists Give Evidence of Dualsteric Binding at the M ₂ Muscarinic Acetylcholine Receptor. Journal of Medicinal Chemistry, 2017, 60, 3314-3334.	6.4	25
25	Heterodimerization of Dibenzodiazepinone-Type Muscarinic Acetylcholine Receptor Ligands Leads to Increased M ₂ R Affinity and Selectivity. ACS Omega, 2017, 2, 6741-6754.	3.5	19
26	In Search of NPY Y ₄ R Antagonists: Incorporation of Carbamoylated Arginine, Aza-Amino Acids, or <scp>d</scp> -Amino Acids into Oligopeptides Derived from the C-Termini of the Endogenous Agonists. ACS Omega, 2017, 2, 3616-3631.	3.5	11
27	High Affinity Agonists of the Neuropeptide Y (NPY) Y ₄ Receptor Derived from the C-Terminal Pentapeptide of Human Pancreatic Polypeptide (hPP): Synthesis, Stereochemical Discrimination, and Radiolabeling. Journal of Medicinal Chemistry, 2016, 59, 6045-6058.	6.4	25
28	Mimicking of Arginine by Functionalized <i>N</i> ^ω -Carbamoylated Arginine As a New Broadly Applicable Approach to Labeled Bioactive Peptides: High Affinity Angiotensin, Neuropeptide Y, Neuropeptide FF, and Neurotensin Receptor Ligands As Examples. Journal of Medicinal Chemistry, 2016, 59, 1925-1945.	6.4	34
29	Toward Labeled Argininamideâ€Type NPY Y ₁ Receptor Antagonists: Identification of a Favorable Propionylation Site in BIBO3304. Archiv Der Pharmazie, 2015, 348, 390-398.	4.1	5
30	Dimeric carbamoylguanidine-type histamine H2 receptor ligands: A new class of potent and selective agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3957-3969.	3.0	23
31	M2 Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding. Bioorganic and Medicinal Chemistry, 2015, 23, 3970-3990.	3.0	15
32	N ^{Ï%} -Carbamoylation of the Argininamide Moiety: An Avenue to Insurmountable NPY Y ₁ Receptor Antagonists and a Radiolabeled Selective High-Affinity Molecular Tool ([³ H]UR-MK299) with Extended Residence Time. Journal of Medicinal Chemistry, 2015, 58, 8834-8849.	6.4	23
33	Dimeric argininamide-type neuropeptide Y receptor antagonists: Chiral discrimination between Y1 and Y4 receptors. Bioorganic and Medicinal Chemistry, 2013, 21, 6303-6322.	3.0	20
34	[³ H]URâ€PLN196: A Selective Nonpeptide Radioligand and Insurmountable Antagonist for the Neuropeptideâ€Y Y ₂ â€Receptor. ChemMedChem, 2013, 8, 587-593.	3.2	10
35	The Neuropeptide Y Y1 Receptor: A Diagnostic Marker? Expression in MCF-7 Breast Cancer Cells Is Down-Regulated by Antiestrogens In Vitro and in Xenografts. PLoS ONE, 2012, 7, e51032.	2.5	20
36	Two dibenzodiazepinone molecules with dissimilar dimeric associations and apparent different tautomeric forms. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o240-o246.	0.4	3

#	Article	IF	CITATION
37	Red-fluorescent argininamide-type NPY Y1 receptor antagonists as pharmacological tools. Bioorganic and Medicinal Chemistry, 2011, 19, 2859-2878.	3.0	42
38	[³ H]URâ€MK136: A Highly Potent and Selective Radioligand for Neuropeptide YY ₁ Receptors. ChemMedChem, 2011, 6, 1566-1571.	3.2	16
39	Application of the Guanidine–Acylguanidine Bioisosteric Approach to Argininamideâ€Type NPY Y ₂ Receptor Antagonists. ChemMedChem, 2011, 6, 1727-1738.	3.2	19
40	Bivalent Argininamideâ€Type Neuropeptideâ€Y Y ₁ Antagonists Do Not Support the Hypothesis of Receptor Dimerisation. ChemMedChem, 2009, 4, 1733-1745.	3.2	19
41	Modular synthesis of non-peptidic bivalent NPY Y1 receptor antagonists. Bioorganic and Medicinal Chemistry, 2008, 16, 9858-9866.	3.0	23
42	Guanidineâ^'Acylguanidine Bioisosteric Approach in the Design of Radioligands: Synthesis of a Tritium-Labeled <i>N</i> <cup>G-Propionylargininamide ([³H]-UR-MK114) as a Highly Potent and Selective Neuropeptide YY₁ Receptor Antagonist. Journal of Medicinal Chemistry, 2008, 51, 8168-8172.</cup>	6.4	50
43	Acylguanidines as Bioisosteres of Guanidines: <i>N</i> ^G -Acylated Imidazolylpropylguanidines, a New Class of Histamine H ₂ Receptor Agonists. Journal of Medicinal Chemistry, 2008, 51, 7193-7204.	6.4	69
44	Synthesis and Characterization of the First Fluorescent Nonpeptide NPY Y ₁ Receptor Antagonist. ChemBioChem, 2007, 8, 1981-1988.	2.6	49