PrzemysÅ, aw RybiÅ, "ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62694/publications.pdf

Version: 2024-02-01

471509 610901 60 872 17 24 g-index citations h-index papers 62 62 62 598 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Advanced Ethylene-Propylene-Diene (EPDM) Rubber Composites Filled with Raw Silicon Carbide or Hybrid Systems with Different Conventional Fillers. Polymers, 2022, 14, 1383.	4.5	8
2	Bio-friendly stable organic-inorganic hybrid pigments based on carminic acid and porous minerals: acid/base allochroic behavior and UV-stabilizing effects on ethylene-norbornene copolymer matrix. Journal of Environmental Chemical Engineering, 2022, 10, 108268.	6.7	6
3	Thermal behavior of the products of 2-chloro-2-propen-1-ol oligomerization. Journal of Thermal Analysis and Calorimetry, 2021, 146, 1623-1627.	3.6	1
4	Novel eco-friendly hybrid pigment with improved stability as a multifunctional additive for elastomer composites with reduced flammability and pH sensing properties. Dyes and Pigments, 2021, 186, 108965.	3.7	20
5	Modified Nanoclays/Straw Fillers as Functional Additives of Natural Rubber Biocomposites. Polymers, 2021, 13, 799.	4.5	17
6	Influence of Thermal Decomposition of Wood and Wood-Based Materials on the State of the Atmospheric Air. Emissions of Toxic Compounds and Greenhouse Gases. Energies, 2021, 14, 3247.	3.1	6
7	Multi-Technique Investigation of Grave Robes from 17th and 18th Century Crypts Using Combined Spectroscopic, Spectrometric Techniques, and New-Generation Sequencing. Materials, 2021, 14, 3535.	2.9	7
8	Investigation into the Effect of Spinel Pigments on the Photostability and Combustion Properties of Ethylene-Norbornene Copolymer. Materials, 2021, 14, 4050.	2.9	6
9	Cat-CrNP as new material with catalytic properties for 2-chloro-2-propen-1-ol and ethylene oligomerizations. Scientific Reports, 2021, 11, 15212.	3.3	6
10	Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites. Materials, 2021, 14, 5245.	2.9	16
11	Straw/Nano-Additive Hybrids as Functional Fillers for Natural Rubber Biocomposites. Materials, 2021, 14, 321.	2.9	12
12	Iminodiacetate complex of cobalt(II) – Structure, physicochemical characteristics, biological properties and catalytic activity for 2-chloro-2-propen-1-ol oligomerization. Polyhedron, 2020, 175, 114168.	2.2	10
13	Impact of organic-inorganic color additive on the properties of ethylene-norbornene copolymer. Polymer Testing, 2020, 82, 106290.	4.8	10
14	Properties of Chemically Modified (Selected Silanes) Lignocellulosic Filler and Its Application in Natural Rubber Biocomposites. Materials, 2020, 13, 4163.	2.9	28
15	Application of Earth Pigments in Cycloolefin Copolymer: Protection against Combustion and Accelerated Aging in the Full Sunlight Spectrum. Materials, 2020, 13, 3381.	2.9	18
16	Silane Treatment as an Effective Way of Improving the Reinforcing Activity of Carbon Nanofibers in Nitrile Rubber Composites. Materials, 2020, 13, 3481.	2.9	16
17	Study on the Effect of Zinc on the Rheological, Mechanical and Thermal Properties and Fire Hazard of Unfilled and Filled CR/BR Vulcanizates. Polymers, 2020, 12, 2904.	4.5	5
18	Characterization of Ethylene–propylene Composites Filled with Perlite and Vermiculite Minerals: Mechanical, Barrier, and Flammability Properties. Materials, 2020, 13, 585.	2.9	19

#	Article	IF	CITATIONS
19	Impact of Basalt Filler on Thermal and Mechanical Properties, as Well as Fire Hazard, of Silicone Rubber Composites, Including Ceramizable Composites. Materials, 2019, 12, 2432.	2.9	10
20	Effect of graphite and common rubber plasticizers on properties and performance of ceramizable styrene–butadiene rubber-based composites. Journal of Thermal Analysis and Calorimetry, 2019, 138, 2409-2417.	3.6	8
21	Determination of toxic products emissions of polymers thermal decomposition using fluidised bed reactor and FTIR analysis. Polymer Testing, 2019, 79, 106040.	4.8	13
22	Synergistic Effect of Mica, Glass Frit, and Melamine Cyanurate for Improving Fire Resistance of Styrene-Butadiene Rubber Composites Destined for Ceramizable Coatings. Coatings, 2019, 9, 170.	2.6	18
23	New Organic/Inorganic Pigments Based on Azo Dye and Aluminum-Magnesium Hydroxycarbonates with Various Mg/Al Ratios. Materials, 2019, 12, 1349.	2.9	9
24	Carminic Acid Stabilized with Aluminum-Magnesium Hydroxycarbonate as New Colorant Reducing Flammability of Polymer Composites. Molecules, 2019, 24, 560.	3.8	10
25	Aluminum-Magnesium Hydroxycarbonate/Azo Dye Hybrids as Novel Multifunctional Colorants for Elastomer Composites. Polymers, 2019, 11, 43.	4.5	12
26	Impact of Basalt Filler and Ceramizable Additives on the Toxicity of Gaseous Products Emitted from Thermal Decomposition of Silicone Rubber Composites. Materials, 2019, 12, 3478.	2.9	6
27	Influence of cenospheric fillers on the thermal properties, ceramisation and flammability of nitrile rubber composites. Journal of Composite Materials, 2018, 52, 2815-2827.	2.4	11
28	Influence of Lignocellulose Fillers on Properties Natural Rubber Composites. Journal of Polymers and the Environment, 2018, 26, 2489-2501.	5.0	24
29	Effect of mineral filler additives on flammability, processing and use of silicone-based ceramifiable composites. Polymer Bulletin, 2018, 75, 1731-1751.	3.3	22
30	Effect of POSS Particles and Synergism Action of POSS and Poly-(Melamine Phosphate) on the Thermal Properties and Flame Retardance of Silicone Rubber Composites. Materials, 2018, 11, 1298.	2.9	20
31	Effect of modified graphene and carbon nanotubes on the thermal properties and flammability of elastomeric materials. Journal of Thermal Analysis and Calorimetry, 2017, 127, 2383-2396.	3. 6	20
32	Processing and Properties of Fire Resistant EPDM Rubber-Based Ceramifiable Composites. High Temperature Materials and Processes, 2017, 36, 963-969.	1.4	7
33	Influence of Carbon Fillers on Thermal Properties and Flammability of Polymeric Nanocomposites. International Polymer Processing, 2017, 32, 270-289.	0.5	5
34	Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites. Materials, 2016, 9, 604.	2.9	17
35	Effect of cenospheric fillers on the flammability and fire hazard of silicone rubber composites. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1373-1386.	3.6	16
36	Effect of hybrid filler (HNTsâ€phthalocyanine) on the thermal properties and flammability of diene rubber. Journal of Applied Polymer Science, 2015, 132, .	2.6	11

#	Article	IF	Citations
37	Influence of cenosphere particles on thermal properties composites of silicon rubber. Journal of Thermal Analysis and Calorimetry, 2015, 122, 1307-1318.	3.6	12
38	Pigmented elastomeric composites with limited flammability. Polimery, 2015, 60, 396-401.	0.7	2
39	Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends. Journal of Thermal Analysis and Calorimetry, 2014, 115, 771-782.	3.6	22
40	Effect of the spatial network structure and cross-link density of diene rubbers on their thermal stability and fire hazard. Journal of Thermal Analysis and Calorimetry, 2014, 117, 377-386.	3.6	17
41	Thermal properties of diene elastomers. Polymer Science - Series B, 2014, 56, 477-486.	0.8	9
42	The thermal properties and the flammability of pigmented elastomeric materials. Journal of Thermal Analysis and Calorimetry, 2014, 117, 789-798.	3.6	15
43	Thermal stability and flammability of nanocomposites made of diene rubbers and modified halloysite nanotubes. Journal of Thermal Analysis and Calorimetry, 2013, 113, 31-41.	3.6	22
44	Thermal stability and flammability of styrene–butadiene rubber (SBR) composites. Journal of Thermal Analysis and Calorimetry, 2013, 113, 43-52.	3.6	18
45	Thermal properties and flammability of ethylene-vinyl acetate rubbers (EVM) and their cross-linked blends with nitrile rubber (NBR). Thermochimica Acta, 2013, 568, 104-114.	2.7	10
46	Influence synergetic effect of halloysite nanotubes and halogen-free flame-retardants on properties nitrile rubber composites. Thermochimica Acta, 2013, 557, 24-30.	2.7	45
47	Flammability and other properties of elastomeric materials and nanomaterials. Part I. Nanocomposites of elastomers with montmorillonite or halloysite. Polimery, 2013, 58, 327-341.	0.7	5
48	Flammability and other properties of elastomeric materials and nanomaterials. Part II. Nanocomposites of elastomers with attapulgite, nanosilica, nanofibres and carbon nanotubes. Polimery, 2013, 58, 533-542.	0.7	5
49	Thermal properties and flammability of nanocomposites based on nitrile rubbers and activated halloysite nanotubes and carbon nanofibers. Thermochimica Acta, 2012, 549, 6-12.	2.7	31
50	Thermal stability and flammability of butadiene–styrene rubber nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 109, 561-571.	3.6	33
51	Flammability of vulcanizates of diene rubbers. Journal of Thermal Analysis and Calorimetry, 2012, 107, 1219-1224.	3.6	25
52	Thermal properties and flammability of nanocomposites based on diene rubbers and naturally occurring and activated halloysite nanotubes. Journal of Thermal Analysis and Calorimetry, 2012, 107, 1243-1249.	3.6	42
53	Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites. Journal of Thermal Analysis and Calorimetry, 2011, 103, 1039-1046.	3.6	39
54	Influence of surface modification on thermal stability and flammability of cross-linked rubbers. Journal of Thermal Analysis and Calorimetry, 2010, 100, 1037-1044.	3.6	5

#	Article	IF	CITATIONS
55	Influence of cryogenic modification of silica on thermal properties and flammability of cross-linked nitrile rubber. Journal of Thermal Analysis and Calorimetry, 2010, 101, 665-670.	3.6	7
56	Flammability of diene rubbers. Journal of Thermal Analysis and Calorimetry, 2010, 102, 1043-1049.	3.6	25
57	Influence of network structures of nitrile rubbers on their thermal properties. Polimery, 2009, 54, 275-282.	0.7	16
58	Effect of flame retardants on thermal stability and flammability of cured nitrile rubber. Polimery, 2009, 54, 833-839.	0.7	8
59	Mineral Nanofillers Obtained via Cryogenic Deaggregation Method. Solid State Phenomena, 2003, 94, 309-312.	0.3	1
60	Thermal properties of butadiene-acrylonitrile rubbers. Polimery, 2003, 48, 183-187.	0.7	8