
Sujoy Mukhopadhyay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6269108/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Krypton in the Chassigny meteorite shows Mars accreted chondritic volatiles before nebular gases. Science, 2022, 377, 320-324.	12.6	10
2	Pre-subduction mantle noble gas elemental pattern reveals larger missing xenon in the deep interior compared to the atmosphere. Earth and Planetary Science Letters, 2022, 593, 117655.	4.4	1
3	Incompatibility of argon during magma ocean crystallization. Earth and Planetary Science Letters, 2021, 553, 116598.	4.4	4
4	Heavy noble gas signatures of the North Atlantic Popping Rock 2ÎD43: Implications for mantle noble gas heterogeneity. Geochimica Et Cosmochimica Acta, 2021, 294, 89-105.	3.9	10
5	Deep-mantle krypton reveals Earth's early accretion of carbonaceous matter. Nature, 2021, 600, 462-467.	27.8	19
6	A new dual stainless steel cryogenic trap for efficient separation of krypton from argon and xenon. Journal of Analytical Atomic Spectrometry, 2020, 35, 2663-2671.	3.0	4
7	The spatial footprint of hydrothermal scavenging on 230ThXS-derived mass accumulation rates. Geochimica Et Cosmochimica Acta, 2020, 272, 218-234.	3.9	7
8	Primitive Helium Is Sourced From Seismically Slow Regions in the Lowermost Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 4130-4145.	2.5	34
9	Noble Gases: A Record of Earth's Evolution and Mantle Dynamics. Annual Review of Earth and Planetary Sciences, 2019, 47, 389-419.	11.0	56
10	Capture of nebular gases during Earth's accretion is preserved in deep-mantle neon. Nature, 2019, 565, 78-81.	27.8	71
11	A first-principles and experimental study of helium diffusion in periclase MgO. Physics and Chemistry of Minerals, 2018, 45, 641-654.	0.8	2
12	Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka. Earth and Planetary Science Letters, 2018, 482, 12-22.	4.4	26
13	Xenon isotopic constraints on the history of volatile recycling into the mantle. Nature, 2018, 560, 223-227.	27.8	47
14	Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth and Planetary Science Letters, 2018, 496, 108-119.	4.4	40
15	Hydrothermal deposition on the Juan de Fuca Ridge over multiple glacial–interglacial cycles. Earth and Planetary Science Letters, 2017, 479, 120-132.	4.4	24
16	Helium and thorium isotope constraints on African dust transport to the Bahamas over recent millennia. Earth and Planetary Science Letters, 2017, 457, 385-394.	4.4	10
17	Subterranean production of neutrons, 39Ar and 21Ne: Rates and uncertainties. Geochimica Et Cosmochimica Acta, 2017, 196, 370-387.	3.9	25
18	Hydrothermal iron flux variability following rapid sea level changes. Geophysical Research Letters, 2016, 43, 3848-3856.	4.0	45

#	Article	IF	CITATIONS
19	Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science, 2016, 352, 809-812.	12.6	130
20	The evolution of MORB and plume mantle volatile budgets: Constraints from fission Xe isotopes in Southwest Indian Ridge basalts. Geochemistry, Geophysics, Geosystems, 2015, 16, 719-735.	2.5	47
21	A study of the trace 39Ar content in argon from deep underground sources. Astroparticle Physics, 2015, 66, 53-60.	4.3	22
22	Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth and Planetary Science Letters, 2014, 393, 254-265.	4.4	116
23	How Did Early Earth Become Our Modern World?. Annual Review of Earth and Planetary Sciences, 2014, 42, 151-178.	11.0	82
24	Heterogeneities from the first 100 million years recorded in deep mantle noble gases from the Northern Lau Back-arc Basin. Earth and Planetary Science Letters, 2013, 369-370, 13-23.	4.4	60
25	Controls on interior West Antarctic Ice Sheet Elevations: inferences from geologic constraints and ice sheet modeling. Quaternary Science Reviews, 2013, 65, 26-38.	3.0	21
26	147Sm-143Nd systematics of Earth are inconsistent with a superchondritic Sm/Nd ratio. Proceedings of the United States of America, 2013, 110, 4929-4934.	7.1	27
27	Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature, 2012, 486, 101-104.	27.8	314
28	West Antarctic Ice Sheet elevations in the Ohio Range: Geologic constraints and ice sheet modeling prior to the last highstand. Earth and Planetary Science Letters, 2011, 307, 83-93.	4.4	27
29	Preserving noble gases in a convecting mantle. Nature, 2009, 459, 560-563.	27.8	96
30	New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth and Planetary Science Letters, 2009, 277, 253-261.	4.4	68
31	Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic 3He in olivines from Hawaiian river sediments. Earth and Planetary Science Letters, 2008, 266, 303-315.	4.4	50
32	Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature, 2007, 449, 1037-1040.	27.8	87
33	Interstellar Chemistry Recorded in Organic Matter from Primitive Meteorites. Science, 2006, 312, 727-730.	12.6	315
34	Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon. Earth and Planetary Science Letters, 2006, 248, 451-461.	4.4	50
35	New insights into the carrier phase(s) of extraterrestrial 3He in geologically old sediments. Geochimica Et Cosmochimica Acta, 2006, 70, 5061-5073.	3.9	25
36	Isotopic Compositions of Cometary Matter Returned by Stardust. Science, 2006, 314, 1724-1728.	12.6	343

#	Article	IF	CITATIONS
37	Absence of extraterrestrial 3He in Permian–Triassic age sedimentary rocks. Earth and Planetary Science Letters, 2005, 240, 265-275.	4.4	47
38	lsotopic Signatures of Presolar Materials in Interplanetary Dust. Space Science Reviews, 2003, 106, 155-172.	8.1	51
39	A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3. Science, 2001, 291, 1952-1955.	12.6	95
40	A 35 Myr record of helium in pelagic limestones from Italy: implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene. Geochimica Et Cosmochimica Acta, 2001, 65, 653-669.	3.9	50