David Bruce Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6268745/publications.pdf

Version: 2024-02-01

40 papers

1,702 citations

331259 21 h-index 315357 38 g-index

43 all docs 43
docs citations

times ranked

43

2408 citing authors

#	Article	IF	Citations
1	Do geographically isolated wetlands influence landscape functions?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1978-1986.	3.3	297
2	Geographically Isolated Wetlands are Important Biogeochemical Reactors on the Landscape. BioScience, 2015, 65, 408-418.	2.2	163
3	Linking Optimal Foraging Behavior to Bird Community Structure in an Urbanâ€Desert Landscape: Field Experiments with Artificial Food Patches. American Naturalist, 2004, 164, 232-243.	1.0	144
4	Enhancing protection for vulnerable waters. Nature Geoscience, 2017, 10, 809-815.	5.4	141
5	Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt marshes. Estuarine, Coastal and Shelf Science, 2014, 139, 11-19.	0.9	94
6	Spatially heterogeneous refugia and predation risk in intertidal salt marshes. Oikos, 2002, 96, 119-129.	1.2	66
7	HIERARCHICAL REGULATION OF NITROGEN EXPORT FROM URBAN CATCHMENTS: INTERACTIONS OF STORMS AND LANDSCAPES. Ecological Applications, 2007, 17, 2347-2364.	1.8	65
8	Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands. International Journal of Applied Earth Observation and Geoinformation, 2014, 33, 47-56.	1.4	63
9	Landscape spatial patterns in freshwater snail assemblages across Northern Highland catchments. Freshwater Biology, 2000, 43, 409-420.	1.2	51
10	Agrarian legacy in soil nutrient pools of urbanizing arid lands. Global Change Biology, 2006, 12, 703-709.	4.2	48
11	TRADE-OFFS BETWEEN GROWTH AND SURVIVAL: RESPONSES OF FRESHWATER SNAILS TO PREDACIOUS CRAYFISH. Ecology, 2001, 82, 758-765.	1.5	45
12	Distribution of recreational boating across lakes: do landscape variables affect recreational use?. Freshwater Biology, 2000, 43, 439-448.	1.2	43
13	Forest succession, soil carbon accumulation, and rapid nitrogen storage in poorly remineralized soil organic matter. Ecology, 2014, 95, 2687-2693.	1.5	40
14	Intraspecific gastropod shell strength variation among north temperate lakes. Canadian Journal of Fisheries and Aquatic Sciences, 1999, 56, 1687-1695.	0.7	39
15	Saltwater intrusion as potential driver of phosphorus release from limestone bedrock in a coastal aquifer. Estuarine, Coastal and Shelf Science, 2017, 184, 166-176.	0.9	35
16	Inorganic nitrogen immobilization in live and sterile soil of old-growth conifer and hardwood forests: implications for ecosystem nitrogen retention. Biogeochemistry, 2012, 111, 169-186.	1.7	34
17	Labile carbon and other soil quality indicators in two tillage systems during transition to organic agriculture. Renewable Agriculture and Food Systems, 2011, 26, 342-353.	0.8	33
18	Response of soil nitrogen retention to the interactive effects of soil texture, hydrology, and organic matter. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 280-290.	1.3	33

#	Article	IF	CITATIONS
19	Hydrologic characterization of 56 geographically isolated wetlands in west-central Florida using a probabilistic method. Wetlands Ecology and Management, 2013, 21, 1-14.	0.7	27
20	Subsystems, flowpaths, and the spatial variability of nitrogen in a fluvial ecosystem. Landscape Ecology, 2007, 22, 911-924.	1.9	23
21	Legacies of agriculture and urbanization in labile and stable organic carbon and nitrogen in Sonoran Desert soils. Ecosphere, 2014, 5, 1-18.	1.0	22
22	Landscape-scale Variation in Taxonomic Diversity in Four Groups of Aquatic Organisms: The Influence of Physical, Chemical, and Biological Properties. Ecosystems, 2005, 8, 301-317.	1.6	21
23	The Spatial Structure of Variability in a Semi-arid, Fluvial Ecosystem. Ecosystems, 2006, 9, 386-397.	1.6	21
24	Multivariate relationships influencing crop yields during the transition to organic management. Agriculture, Ecosystems and Environment, 2014, 189, 119-126.	2.5	17
25	Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply. Global Change Biology, 2015, 21, 1704-1714.	4.2	15
26	Control of phosphorus concentration through adsorption and desorption in shallow groundwater of subtropical carbonate estuary. Estuarine, Coastal and Shelf Science, 2016, 169, 238-247.	0.9	14
27	Inheritance of DNA methylation differences in the mangrove <i>Rhizophora mangle</i> . Evolution & Development, 2021, 23, 351-374.	1.1	13
28	Carbon and nitrogen pools and mobile fractions in surface soils across a mangrove saltmarsh ecotone. Science of the Total Environment, 2021, 798, 149328.	3.9	12
29	Plasticity in Resource Allocation and Nitrogen-use Efficiency in Riparian Vegetation: Implications for Nitrogen Retention. Ecosystems, 2006, 9, 740-755.	1.6	10
30	Effects of urbanization on nutrient biogeochemistry of aridland streams. Geophysical Monograph Series, 2004, , 129-146.	0.1	9
31	Evolutionary Dynamics of Treatment-Induced Resistance in Cancer Informs Understanding of Rapid Evolution in Natural Systems. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	9
32	Stream network variation in dissolved oxygen: Metabolism proxies and biogeochemical controls. Ecological Indicators, 2021, 131, 108233.	2.6	9
33	Why is calcite a strong phosphorus sink in freshwater? Investigating the adsorption mechanism using batch experiments and surface complexation modeling. Chemosphere, 2022, 286, 131596.	4.2	7
34	Coupling Biogeochemistry and Hydropedology to Advance Carbon and Nitrogen Cycling Science., 2012, ,711-735.		6
35	Response of wetland soil carbon to groundwater conservation: Probabilistic outcomes from error propagation. Ecological Indicators, 2016, 60, 538-547.	2.6	6
36	Benthic jellyfish dominate water mixing in mangrove ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5

#	Article	IF	CITATION
37	Rapid and Intense Phosphate Desorption Kinetics When Saltwater Intrudes into Carbonate Rock. Estuaries and Coasts, 2017, 40, 1301-1313.	1.0	4
38	TRADE-OFFS BETWEEN GROWTH AND SURVIVAL: RESPONSES OF FRESHWATER SNAILS TO PREDACIOUS CRAYFISH. , 2001, 82, 758.		2
39	Trait Response to Nitrogen and Salinity in Rhizophora mangle Propagules and Variation by Maternal Family and Population of Origin. Frontiers in Marine Science, 2021, 8, .	1.2	2
40	Genetic and Epigenetic Differentiation Across Intertidal Gradients in the Foundation Plant Spartina alterniflora. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	2