Francisco Millan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/626831/publications.pdf Version: 2024-02-01

FRANCISCO MILLAN

#	Article	IF	CITATIONS
1	Determination of tryptophan by high-performance liquid chromatography of alkaline hydrolysates with spectrophotometric detection. Food Chemistry, 2004, 85, 317-320.	8.2	172
2	Improvement of functional properties of chickpea proteins by hydrolysis with immobilised Alcalase. Food Chemistry, 2010, 122, 1212-1217.	8.2	120
3	Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. Journal of Functional Foods, 2014, 8, 224-233.	3.4	53
4	Nutraceutical value of kiwicha (Amaranthus caudatus L.). Journal of Functional Foods, 2020, 65, 103735.	3.4	52
5	Neuroprotective protein hydrolysates from hemp (<i>Cannabis sativa</i> L.) seeds. Food and Function, 2019, 10, 6732-6739.	4.6	43
6	GPETAFLR: A new anti-inflammatory peptide from Lupinus angustifolius L. protein hydrolysate. Journal of Functional Foods, 2015, 18, 358-367.	3.4	39
7	Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food Chemistry, 2014, 151, 141-147.	8.2	38
8	Hemp (Cannabis sativa L.) Protein Hydrolysates Promote Anti-Inflammatory Response in Primary Human Monocytes. Biomolecules, 2020, 10, 803.	4.0	38
9	Lupine protein hydrolysates decrease the inflammatory response and improve the oxidative status in human peripheral lymphocytes. Food Research International, 2019, 126, 108585.	6.2	31
10	Safety and Efficacy of a Beverage Containing Lupine Protein Hydrolysates on the Immune, Oxidative and Lipid Status in Healthy Subjects: An Intervention Study (the Lupineâ€I Trial). Molecular Nutrition and Food Research, 2021, 65, e2100139.	3.3	26
11	Unsaponifiable fraction isolated from grape (Vitis vinifera L.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food and Function, 2018, 9, 2517-2523.	4.6	22
12	GPETAFLR, a novel bioactive peptide from Lupinus angustifolius L. protein hydrolysate, reduces osteoclastogenesis. Journal of Functional Foods, 2018, 47, 299-303.	3.4	21
13	Evaluation of Anti-Inflammatory and Atheroprotective Properties of Wheat Gluten Protein Hydrolysates in Primary Human Monocytes. Foods, 2020, 9, 854.	4.3	18
14	Antioxidant and Anti-Inflammatory Properties of Bioavailable Protein Hydrolysates from Lupin-Derived Agri-Waste. Biomolecules, 2021, 11, 1458.	4.0	18
15	GPETAFLR, an octapeptide isolated from Lupinus angustifolius L. protein hydrolysate, promotes the skewing to the M2 phenotype in human primary monocytes. Food and Function, 2019, 10, 3303-3311.	4.6	17
16	A lupine (<i>Lupinus angustifolious</i> L.) peptide prevents non-alcoholic fatty liver disease in high-fat-diet-induced obese mice. Food and Function, 2020, 11, 2943-2952.	4.6	17
17	Immunomodulatory and Antioxidant Properties of Wheat Gluten Protein Hydrolysates in Human Peripheral Blood Mononuclear Cells. Nutrients, 2020, 12, 1673.	4.1	16
18	Lupinus angustifolius Protein Hydrolysates Reduce Abdominal Adiposity and Ameliorate Metabolic Associated Fatty Liver Disease (MAFLD) in Western Diet Fed-ApoEâ^'/â^' Mice. Antioxidants, 2021, 10, 1222.	5.1	16

FRANCISCO MILLAN

#	Article	IF	CITATIONS
19	Antihypertensive and Antioxidant Activity of Chia Protein Techno-Functional Extensive Hydrolysates. Foods, 2021, 10, 2297.	4.3	15
20	A <i>Lupinus angustifolius</i> protein hydrolysate exerts hypocholesterolemic effects in Western diet-fed ApoE ^{â^'/â^'} mice through the modulation of LDLR and PCSK9 pathways. Food and Function, 2022, 13, 4158-4170.	4.6	15
21	Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte–Macrophage Plasticity. Foods, 2022, 11, 623.	4.3	12
22	Bioactive Peptides from Lupin (<i>Lupinus angustifolius</i>) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE ^{–/–} Mice. Journal of Agricultural and Food Chemistry, 2022, 70, 8243-8253.	5.2	12
23	Identification and Characterization of Novel Antioxidant Protein Hydrolysates from Kiwicha (Amaranthus caudatus L.). Antioxidants, 2021, 10, 645.	5.1	8