Finnegan J Calabro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6267917/publications.pdf

Version: 2024-02-01

39 papers 1,818 citations

471509 17 h-index 330143 37 g-index

46 all docs

46 docs citations

46 times ranked

1636 citing authors

#	Article	IF	CITATIONS
1	Reproducible brain-wide association studies require thousands of individuals. Nature, 2022, 603, 654-660.	27.8	842
2	Development of White Matter Microstructure and Intrinsic Functional Connectivity Between the Amygdala and Ventromedial Prefrontal Cortex: Associations With Anxiety and Depression. Biological Psychiatry, 2017, 82, 511-521.	1.3	201
3	The role of experience in adolescent cognitive development: Integration of executive, memory, and mesolimbic systems. Neuroscience and Biobehavioral Reviews, 2016, 70, 46-58.	6.1	101
4	Development of Hippocampal–Prefrontal Cortex Interactions through Adolescence. Cerebral Cortex, 2020, 30, 1548-1558.	2.9	67
5	Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nature Communications, 2020, 11, 846.	12.8	58
6	Meta-analysis and review of functional neuroimaging differences underlying adolescent vulnerability to substance use. NeuroImage, 2020, 209, 116476.	4.2	50
7	Adolescent cannabis use and brain systems supporting adult working memory encoding, maintenance, and retrieval. Neurolmage, 2018, 169, 496-509.	4.2	46
8	The expression of established cognitive brain states stabilizes with working memory development. ELife, $2017, 6, .$	6.0	41
9	An evolutionary gap in primate default mode network organization. Cell Reports, 2022, 39, 110669.	6.4	33
10	Functional connectome fingerprinting accuracy in youths and adults is similar when examined on the same day and 1.5â€years apart. Human Brain Mapping, 2020, 41, 4187-4199.	3.6	30
11	Early Cannabis Use and Neurocognitive Risk: AÂProspective Functional Neuroimaging Study. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018, 3, 713-725.	1.5	28
12	Dopamine-related striatal neurophysiology is associated with specialization of frontostriatal reward circuitry through adolescence. Progress in Neurobiology, 2021, 201, 101997.	5.7	28
13	Reorganization of Retinotopic Maps after Occipital Lobe Infarction. Journal of Cognitive Neuroscience, 2014, 26, 1266-1282.	2.3	26
14	Acoustic facilitation of object movement detection during self-motion. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2840-2847.	2.6	25
15	Age-Related Trajectories of Functional Coupling between the VTA and Nucleus Accumbens Depend on Motivational State. Journal of Neuroscience, 2018, 38, 7420-7427.	3.6	25
16	Adolescent development of inhibitory control and substance use vulnerability: A longitudinal neuroimaging study. Developmental Cognitive Neuroscience, 2020, 42, 100771.	4.0	20
17	Interaction of cortical networks mediating object motion detection by moving observers. Experimental Brain Research, 2012, 221, 177-189.	1.5	19
18	A computational study of whole-brain connectivity in resting state and task fMRI. Medical Science Monitor, 2014, 20, 1024-1042.	1.1	19

#	Article	IF	Citations
19	Working memory improves developmentally as neural processes stabilize. PLoS ONE, 2019, 14, e0213010.	2.5	15
20	Contributions of dopamine-related basal ganglia neurophysiology to the developmental effects of incentives on inhibitory control. Developmental Cognitive Neuroscience, 2022, 54, 101100.	4.0	14
21	Different motion cues are used to estimate time-to-arrival for frontoparallel and looming trajectories. Vision Research, 2011, 51, 2378-2385.	1.4	12
22	Considerations When Characterizing Adolescent Neurocognitive Development. Biological Psychiatry, 2021, 89, 96-98.	1.3	12
23	Influences of affective context on amygdala functional connectivity during cognitive control from adolescence through adulthood. Developmental Cognitive Neuroscience, 2020, 45, 100836.	4.0	11
24	Hippocampal-Prefrontal Connectivity Prior to the COVID-19 Pandemic Predicts Stress Reactivity. Biological Psychiatry Global Open Science, 2021, 1, 283-290.	2.2	10
25	Context-specific abnormalities of the central executive network in first-episode psychosis: relationship with cognition. Psychological Medicine, 2020, , 1-10.	4.5	9
26	Stereo Motion Transparency Processing Implements an Ecological Smoothness Constraint. Perception, 2006, 35, 1219-1232.	1.2	7
27	Aging Impairs Audiovisual Facilitation of Object Motion Within Self-Motion. Multisensory Research, 2018, 31, 251-272.	1.1	6
28	Integration Mechanisms for Heading Perception. Seeing and Perceiving, 2010, 23, 197-221.	0.3	4
29	Assessment of motion and model bias on the detection of dopamine response to behavioral challenge. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1309-1321.	4.3	4
30	Subcortical brain iron deposition in individuals with schizophrenia. Journal of Psychiatric Research, 2022, 151, 272-278.	3.1	4
31	Long-Range Coupling of Prefrontal Cortex and Visual (MT) or Polysensory (STP) Cortical Areas in Motion Perception. IFMBE Proceedings, 2010, , 298-301.	0.3	3
32	Two mechanisms for optic flow and scale change processing of looming. Journal of Vision, 2011, 11, 5-5.	0.3	3
33	A computerized perimeter for assessing modality-specific visual field loss. , 2011, 2011, 2025-8.		3
34	Peripheral visual localization is degraded by globally incongruent auditory-spatial attention cues. Experimental Brain Research, 2019, 237, 2137-2143.	1.5	3
35	Population Anisotropy in Area MT Explains a Perceptual Difference Between Near and Far Disparity Motion Segmentation. Journal of Neurophysiology, 2011, 105, 200-208.	1.8	2
36	Differential cortical activation during the perception of moving objects along different trajectories. Experimental Brain Research, 2019, 237, 2665-2673.	1.5	2

#	Article	IF	CITATIONS
37	Relationship between plasma clozapine/N-desmethylclozapine and changes in basal forebrain-dorsolateral prefrontal cortex coupling in treatment-resistant schizophrenia. Schizophrenia Research, 2022, 243, 170-177.	2.0	2
38	Auditory cues facilitate object movement processing in human extrastriate visual cortex during simulated self-motion: A pilot study. Brain Research, 2021, 1765, 147489.	2.2	1
39	Scale Changes Provide an Alternative Cue For the Discrimination of Heading, But Not Object Motion. Medical Science Monitor, 2016, 22, 1782-1791.	1.1	0