
Boris N Kuznetsov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/626773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the mechanism of vanillin formation in the catalytic oxidation of lignin with oxygen. Reaction Kinetics and Catalysis Letters, 1995, 55, 161-170.	0.6	70
2	Processing Pine Wood into Vanillin and Glucose by Sequential Catalytic Oxidation and Enzymatic Hydrolysis. Journal of Wood Chemistry and Technology, 2017, 37, 43-51.	0.9	42
3	Influence of lignin origin on the efficiency of the catalytic oxidation of lignin into vanillin and syringaldehyde. Russian Chemical Bulletin, 1995, 44, 367-371.	0.4	39
4	Production of levulinic acid from wood raw material in the presence of sulfuric acid and its salts. Chemistry of Natural Compounds, 1998, 34, 182-185.	0.2	35
5	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	2.9	29
6	New catalytic methods for obtaining cellulose and other chemical products from vegetable biomass. Kinetics and Catalysis, 2008, 49, 517-526.	0.3	28
7	The study of different methods of bio-liquids production from wood biomass and from biomass/polyolefine mixtures. International Journal of Hydrogen Energy, 2009, 34, 7051-7056.	3.8	28
8	Properties of silica-supported Ptâ^'Mo and Pdâ^'Mo catalysts obtained from organometallic compounds. Reaction Kinetics and Catalysis Letters, 1975, 2, 151-161.	0.6	24
9	The conversion of neopentane on supported catalysts Pt + W/SiO2 and Pt + Mo/SiO2 obtained through organometallic compounds of Pt, W and Mo. Journal of Molecular Catalysis, 1978, 4, 49-57.	1.2	24
10	Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization. Catalysts, 2021, 11, 467.	1.6	24
11	Sulfation of arabinogalactan by sulfamic acid in dioxane. Russian Journal of Bioorganic Chemistry, 2015, 41, 725-731.	0.3	22
12	Biosourced, highly porous, carbon xerogel microspheres. RSC Advances, 2016, 6, 65698-65708.	1.7	22
13	A study of supported tungsten catalysts for propylene disproportionation obtained from tetrakis (ï€-methallyl)-tungsten. Reaction Kinetics and Catalysis Letters, 1975, 3, 321-327.	0.6	21
14	Hydrothermal hydrolysis of microcrystalline cellulose from birch wood catalyzed by Al2O3-B2O3 mixed oxides. Wood Science and Technology, 2022, 56, 437-457.	1.4	21
15	Lignin conversion in supercritical ethanol in the presence of solid acid catalysts. Kinetics and Catalysis, 2015, 56, 434-441.	0.3	19
16	Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. Wood Science and Technology, 2021, 55, 1725-1744.	1.4	18
17	A green one-step process of obtaining microcrystalline cellulose by catalytic oxidation of wood. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 337-343.	0.8	17
18	Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Science and Technology, 2018, 52, 1377-1394.	1.4	17

#	Article	IF	CITATIONS
19	ESCA study of (Mo+Pt)/SiO2, (W+Pt)/SiO2 and (Re+Pt)/SiO2 catalysts. Reaction Kinetics and Catalysis Letters, 1976, 4, 229-234.	0.6	16
20	New composites of betulin esters with arabinogalactan as highly potent anti-cancer agents. Natural Product Research, 2016, 30, 1382-1387.	1.0	16
21	Optimization of the process of abies ethanol lignin sulfation by sulfamic acid–urea mixture in 1,4-dioxane medium. Wood Science and Technology, 2020, 54, 365-381.	1.4	16
22	X-ray study of Re/Al2O3 and Re+Pt/Al2O3 catalysts using synchrotron radiation. Reaction Kinetics and Catalysis Letters, 1977, 7, 309-313.	0.6	15
23	Electron microscopic studies of platinum catalysts prepared via decomposition of Al2O3-anchored metal complexes. Reaction Kinetics and Catalysis Letters, 1980, 14, 99-103.	0.6	15
24	Thermocatalytic transformations of wood and cellulose in the presence of HCl, HBr, and H2SO4. Chemistry of Natural Compounds, 1997, 33, 84-88.	0.2	15
25	New methods of heterogeneous catalysis for lignocellulosic biomass conversion to chemicals. Russian Chemical Bulletin, 2013, 62, 1493-1502.	0.4	14
26	Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Science and Technology, 2015, 49, 825-843.	1.4	14
27	Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 81-94.	0.8	14
28	Integration of peroxide delignification and sulfamic acid sulfation methods for obtaining cellulose sulfates from aspen wood. European Journal of Wood and Wood Products, 2018, 76, 999-1007.	1.3	14
29	Catalytic pyrolysis of Kansk-Achinsk lignite for production of porous carbon materials. Fuel, 1995, 74, 751-755.	3.4	13
30	Steam cracking of coal-derived liquids and some aromatic compounds in the presence of haematite. Fuel, 1996, 75, 791-794.	3.4	13
31	Catalytic properties of TiO2 in wood delignification by acetic acid - hydrogen peroxide mixture. Reaction Kinetics and Catalysis Letters, 2008, 94, 311-317.	0.6	13
32	Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under mild conditions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 271-280.	0.8	12
33	Optimizing Single-Stage Processes of Microcrystalline Cellulose Production via the Peroxide Delignification of Wood in the Presence of a Titania Catalyst. Catalysis in Industry, 2018, 10, 360-367.	0.3	12
34	Microcalorimetric, IR spectroscopic and thermodesorption studies of CO interaction with γ-Al2O3-supported Rh, Pd, Ir and Pt. Reaction Kinetics and Catalysis Letters, 1985, 28, 103-110.	0.6	11
35	Formation of the pore structure of brown coal upon thermolysis with potassium hydroxide. Solid Fuel Chemistry, 2009, 43, 309-313.	0.2	11
36	Integrated catalytic process for obtaining liquid fuels from renewable lignocellulosic biomass. Kinetics and Catalysis, 2013, 54, 344-352.	0.3	11

#	Article	IF	CITATIONS
37	Synthesis of Betulin Dibenzoate and Diphthalate. Chemistry of Natural Compounds, 2017, 53, 310-311.	0.2	11
38	Application of thin-layer chromatography with fluorescence scanning densitometry for analysing saturates in heavy liquids derived from Co-pyrolysis of biomass and plastics. Chromatographia, 2002, 55, 87-93.	0.7	10
39	X-ray spectral investigation by synchrotron radiation of supported Re/SiO2 and (Re+Pt)/SiO2 catalysts prepared via triethoxyrhenium. Reaction Kinetics and Catalysis Letters, 1978, 8, 377-382.	0.6	9
40	Modification of catalytic properties of silica-supported rhodium. Reaction Kinetics and Catalysis Letters, 1980, 14, 37-41.	0.6	9
41	Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Science and Technology, 2017, 51, 1189-1208.	1.4	9
42	The Raman Spectroscopy, XRD, SEM, and AFM Study of Arabinogalactan Sulfates Obtained Using Sulfamic Acid. Russian Journal of Bioorganic Chemistry, 2017, 43, 722-726.	0.3	9
43	Behavior of Some Perfluorinated Analogs of Thenoyltrifluoroacetone in Aqueous Solution. Journal of Chemical & Engineering Data, 2019, 64, 2593-2600.	1.0	9
44	State of components in supported catalysts prepared via interaction of platinum-tin complexes with Al2O3 surface. Reaction Kinetics and Catalysis Letters, 1981, 18, 267-270.	0.6	8
45	Application of catalysts for producing organic compounds from plant biomass. Reaction Kinetics and Catalysis Letters, 1996, 57, 217-225.	0.6	8
46	Influence of the origin of chars, produced from lignite by different methods, on features of their activation process. Fuel, 1998, 77, 527-532.	3.4	8
47	Complexation of rare earth metals by quercetin and quercetin-5'-sulfonic acid in acidic aqueous solution. Main Group Chemistry, 2018, 17, 17-25.	0.4	8
48	Sulfation of Xylan with Sulfamic Acid in N,N-Dimethylformamide. Russian Journal of Bioorganic Chemistry, 2019, 45, 882-887.	0.3	8
49	Catalytic peroxide fractionation processes for the green biorefinery of wood. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 717-735.	0.8	8
50	Kinetic Studies and Optimization of Heterogeneous Catalytic Oxidation Processes for the Green Biorefinery of Wood. Topics in Catalysis, 2020, 63, 229-242.	1.3	8
51	Influence of conditions of thermal treatment on the properties of catalysts Pt/Î,-Al2O3. Reaction Kinetics and Catalysis Letters, 1977, 6, 393-399.	0.6	7
52	Thiophene hydrogenolysis on supported molybdenum catalysts prepared through Mo(Ï€-C3H5)4. Reaction Kinetics and Catalysis Letters, 1980, 14, 155-160.	0.6	7
53	Preparation of hydrogenation Pt/activated carbon catalyst from a platinum complex. Reaction Kinetics and Catalysis Letters, 1981, 18, 253-256.	0.6	7
54	Carbon supports from natural organic materials and carbon-supported palladium catalysts. Kinetics and Catalysis, 2007, 48, 573-580.	0.3	7

#	Article	IF	CITATIONS
55	Synthesis of porous carbon materials from birch sawdust modified with ZnCl2. Russian Journal of Applied Chemistry, 2007, 80, 920-923.	0.1	7
56	Influence of UV pretreatment on the abies wood catalytic delignification in the medium "acetic acid–hydrogen peroxide–TiO2― Reaction Kinetics and Catalysis Letters, 2009, 97, 295-300.	0.6	7
57	Aqueous Complexation of Morin and Its Sulfonate Derivative with Lanthanum(III) and Trivalent Lanthanides. Journal of Solution Chemistry, 2019, 48, 676-688.	0.6	7
58	Structure and properties of organic xerogels derived from tannins and ethanol lignins of the Siberian fir. Biomass Conversion and Biorefinery, 2021, 11, 1565-1573.	2.9	7
59	X-ray photoelectron spectra of catalysts obtained upon the interaction of W(Ï€-C4H7)4 and SiO2. Reaction Kinetics and Catalysis Letters, 1977, 6, 377-383.	0.6	6
60	Thermal conversion of lignite in a fluidized bed of catalyst. Fuel, 1987, 66, 412-414.	3.4	6
61	Study of cellulose sulfates by X-ray photoelectron spectroscopy. Russian Journal of Bioorganic Chemistry, 2015, 41, 719-724.	0.3	6
62	Sulfation of ethanol lignin of abies wood by sulfamic acid in N,N-dimethylformamide medium. Biomass Conversion and Biorefinery, 2022, 12, 1229-1236.	2.9	6
63	Isolation, Study and Application of Organosolv Lignins (Review). Journal of Siberian Federal University: Chemistry, 2016, 9, 454-482.	0.1	6
64	Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts, 2021, 11, 1362.	1.6	6
65	Use of coal tar pitch and petroleum bitumen in the production of thermally expanded graphite (short) Tj ETQq1 I	L 0,78431 0.2	4 rgBT /Overl
66	Optimization of fir wood delignification by acetic acid in the presence of hydrogen peroxide and a TiO2 catalyst. Theoretical Foundations of Chemical Engineering, 2009, 43, 499-503.	0.2	5
67	Method for Preparing Betulonic Acid from Betula pendula Birch Bark. Chemistry of Natural Compounds, 2016, 52, 766-768.	0.2	5
68	The Study of Structure and Properties of Nanoporous Carbon Materials Obtained by Alkaline Thermal Activation of Lignin of Fir Wood. Journal of Siberian Federal University: Chemistry, 2017, 10, 390-400.	0.1	5
69	The Influence of Sulfuric Acid Catalyst Concentration on Hydrolysis of Birch Wood Hemicelluloses. Journal of Siberian Federal University: Chemistry, 2015, 8, 211-221.	0.1	5
70	Fractionation of birch wood biomass into valuable chemicals by the extraction and catalytic processes. Biomass Conversion and Biorefinery, 2024, 14, 2341-2355.	2.9	5
71	State of supported components in (Pb+Pt)/SiO2 catalysts prepared via decomposition of anchored complexes. Reaction Kinetics and Catalysis Letters, 1980, 15, 233-238.	0.6	4
72	Electron microscopic and chemisorption studies of the dispersity of supported rhodium catalysts of various compositions. Reaction Kinetics and Catalysis Letters, 1981, 16, 43-47.	0.6	4

#	Article	IF	CITATIONS
73	Sulfation of Betulin by Sulfamic Acid in DMF and Dioxane. Chemistry of Natural Compounds, 2014, 50, 1029-1031.	0.2	4
74	Sulfation of betulin with chlorosulfonic acid in dimethylformamide and dioxane. Russian Journal of Bioorganic Chemistry, 2014, 40, 748-751.	0.3	4
75	Conversion of coal into liquid products by hydrogenation and hydropyrolysis processes. Solid Fuel Chemistry, 2014, 48, 117-122.	0.2	4
76	Sulfonation of Betulinic Acid by Sulfamic Acid. Chemistry of Natural Compounds, 2015, 51, 894-896.	0.2	4
77	Porous carbon materials produced by the chemical activation of birch wood. Solid Fuel Chemistry, 2016, 50, 23-30.	0.2	4
78	Lactic Acid Extraction in Systems Containing Organic Amines. Industrial & Engineering Chemistry Research, 2018, 57, 1331-1336.	1.8	4
79	The interaction of morin and morin-5'-sulfonic acid with lead(II): Study of the 1:1 complex formation process in aqueous solution. Main Group Metal Chemistry, 2019, 42, 67-72.	0.6	4
80	Sulfated Derivatives of Arabinogalactan and Their Anticoagulant Activity. Russian Journal of Bioorganic Chemistry, 2020, 46, 1323-1329.	0.3	4
81	Experimental and Mathematical Optimization of the Peroxide Delignification of Larch Wood in the Presence of MnSO4 Catalyst. Catalysis in Industry, 2020, 12, 265-272.	0.3	4
82	Composition of Liquid Products of Acetonlignin Conversion Over NiCu/SiO2 Catalysts in Supercritical Butanol. Journal of Siberian Federal University: Chemistry, 2015, 8, 465-475.	0.1	4
83	Modification of Sulfated Arabinogalactan with Amino Acids by Ion Exchange Method. Journal of Siberian Federal University: Chemistry, 2016, 9, 20-28.	0.1	4
84	Propylene oxidation on supported molybdenum complexes of different nuclearity. Reaction Kinetics and Catalysis Letters, 1983, 22, 133-137.	0.6	3
85	Promoting effect of sodium on catalytic and adsorption properties of Feâ^'Mn catalysts for CO hydrogenation. Reaction Kinetics and Catalysis Letters, 1986, 31, 343-347.	0.6	3
86	Title is missing!. Water Resources, 2002, 29, 404-411.	0.3	3
87	Electrical Conductivity of Hydrophobized Electrodes Fabricated from Thermally Expanded Graphite and Their Activity in Electroreduction of Oxygen. Russian Journal of Applied Chemistry, 2005, 78, 1625-1630.	0.1	3
88	Synthesis of the betulin dipropionate from the upper birch bark. Russian Journal of Bioorganic Chemistry, 2012, 38, 743-748.	0.3	3
89	Integrated transformations of plant biomass to valuable chemicals, biodegradable polymers and nanoporous carbons. Journal of Physics: Conference Series, 2013, 416, 012021.	0.3	3
90	Antitumor activity of the diacylated betulin composites with arabinogalactan. Doklady Chemistry, 2014, 459, 199-201.	0.2	3

#	Article	IF	CITATIONS
91	Production of porous carbon materials from bark. Solid Fuel Chemistry, 2015, 49, 278-288.	0.2	3
92	Synthesis and Study of Copper-Containing Polymers Based on Sulfated Arabinogalactan. Russian Journal of Bioorganic Chemistry, 2017, 43, 727-731.	0.3	3
93	Kinetic Study and Optimization of Catalytic Peroxide Delignification of Aspen Wood. Kinetics and Catalysis, 2018, 59, 48-57.	0.3	3
94	Synthesis and Study of Copper-Containing Polymers of Microcrystalline Cellulose Sulfates from Larch Wood. Russian Journal of Bioorganic Chemistry, 2018, 44, 834-838.	0.3	3
95	Polyphenols of Wood Bark: Organic Precursors for the Production of Polymer Aerogels. Russian Journal of Bioorganic Chemistry, 2018, 44, 845-853.	0.3	3
96	Study of the Blood Compatibility of Sulfated Organosolv Lignins Derived from Abies sibirica and Larix sibirica Wood Pulp. Bulletin of Experimental Biology and Medicine, 2020, 169, 815-820.	0.3	3
97	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. Catalysis in Industry, 2022, 14, 231-250.	0.3	3
98	Influence of the preparation method of precipitated Feâ^'Mn catalysts on their properties in CO hydrogenation. Reaction Kinetics and Catalysis Letters, 1984, 26, 183-188.	0.6	2
99	Composition of the water-soluble products from the thermocatalytic activation of aspen wood. Chemistry of Natural Compounds, 1995, 31, 746-752.	0.2	2
100	Valence state of active elements on the surface of a multicomponent catalyst under the action of reaction medium. Reaction Kinetics and Catalysis Letters, 1998, 63, 329-333.	0.6	2
101	Valence state of elements on the Fe—Ru catalyst surface treated in various media. Kinetics and Catalysis, 2000, 41, 696-699.	0.3	2
102	Principles of searching for catalysts for deep conversion of fossil solid fuels and renewable organic raw materials. Kinetics and Catalysis, 2009, 50, 851-859.	0.3	2
103	Formation of the porous structure of carbon materials during carbonization of microcrystalline cellulose modified by phosphoric acid and potassium hydroxide. Russian Journal of Bioorganic Chemistry, 2011, 37, 809-813.	0.3	2
104	Spectrophotometric and quantum-chemical study of acid-base and complexing properties of (ű)-taxifolin in aqueous solution. Heterocyclic Communications, 2017, 23, .	0.6	2
105	Developing Ways of Obtaining Quality Hydrolyzates Based on Integrating Catalytic Peroxide Delignification and the Acid Hydrolysis of Birch Wood. Catalysis in Industry, 2018, 10, 142-151.	0.3	2
106	Synthesis of Betulin Bromobenzoate, Dicinnamate, and Disuccinate in Melts of the Corresponding Acids. Chemistry of Natural Compounds, 2020, 56, 951-952.	0.2	2
107	γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. Catalysis in Industry, 2021, 13, 289-308.	0.3	2
108	Thermocatalytic Conversions of Wood Biomass in Fluidized Bed of Catalysts. , 1997, , 282-293.		2

108 Thermocatalytic Conversions of Wood Biomass in Fluidized Bed of Catalysts. , 1997, , 282-293.

#	Article	IF	CITATIONS
109	Study of Birch Wood Catalytic Delignification by Hydrogen Peroxide at Atmospheric Pressure. Journal of Siberian Federal University: Chemistry, 2015, 8, 422-429.	0.1	2
110	Isolation and Study of Proanthocyanidins from Bark of Pine Pinus sylvestris L Russian Journal of Bioorganic Chemistry, 2021, 47, 1445-1450.	0.3	2
111	Hydrocarbon conversion on promoted rhodium/Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 1982, 18, 213-216.	0.6	1
112	Influence of Znâ^²Cr catalyst on the liquefaction of coal in methanol. Reaction Kinetics and Catalysis Letters, 1986, 32, 245-250.	0.6	1
113	Changes in iron oxidation state and surface composition of iron-chromium catalyst reduced by hydrogen. Reaction Kinetics and Catalysis Letters, 1990, 41, 7-11.	0.6	1
114	Metal complex catalysis in the chemistry of solid organic raw material. Russian Chemical Reviews, 1990, 59, 1185-1192.	2.5	1
115	New catalytic methods for processing solid organic raw materials. Reaction Kinetics and Catalysis Letters, 1995, 55, 445-454.	0.6	1
116	Chemical transformations of a SiO2-supported [Fe5RhC(CO)16]? cluster and catalysis of propylene hydroformylation. Russian Chemical Bulletin, 1995, 44, 611-620.	0.4	1
117	Cluster carbonyls of Os, Fe and Feâ€Rh on oxide supports: Synthesis and properties. Macromolecular Symposia, 1998, 136, 41-46.	0.4	1
118	Change in carbon content on the surface of a multicomponent catalyst during its reduction, oxidation and due to action of the reaction medium. Reaction Kinetics and Catalysis Letters, 1999, 67, 89-93.	0.6	1
119	Title is missing!. Kinetics and Catalysis, 2001, 42, 92-96.	0.3	1
120	Deactivation of catalysts for fossil coal and biomass conversion. Catalysis in Industry, 2009, 1, 250-259.	0.3	1
121	Production and properties of porous carbon materials from chemically modified microcrystalline cellulose. Russian Journal of Applied Chemistry, 2015, 88, 442-448.	0.1	1
122	New Synthesis of Allobetulin 3-O-Acylates. Chemistry of Natural Compounds, 2018, 54, 806-807.	0.2	1
123	A spectrophotometric and DFT study of the behavior of 6-bromoquercetin in aqueous solution. Chemical Papers, 2019, 73, 1731-1741.	1.0	1
124	Study of Thermochemical Transformations of Bast of Birch Bark, Structure and Properties of the Produced Porous Carbon Materials. Russian Journal of Applied Chemistry, 2020, 93, 1349-1358.	0.1	1
125	Study of Microcryslalline Cellulose Sulfates Obtained with the Use of Chlorosulfonic and Sulfamic Acids. Journal of Siberian Federal University: Chemistry, 2016, 9, 119-133.	0.1	1
126	Reductive Fractionation of Larch Wood in Supercritical Ethanol in the Presence of a Bifunctional Ru/C Catalyst and Hydrogen Donors. Catalysis in Industry, 2020, 12, 330-342.	0.3	1

#	Article	IF	CITATIONS
127	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing. Kataliz V Promyshlennosti, 2021, 21, 425-443.	0.2	1
128	Influence of alkali promoters on the direction of CO conversion on precipitated Fe catalysts. Reaction Kinetics and Catalysis Letters, 1986, 32, 513-518.	0.6	0
129	Genesis of phase composition in Feâ^'Mn catalysts for synthesis of olefins from CO and H2 under catalytic conditions in situ. Reaction Kinetics and Catalysis Letters, 1987, 34, 339-344.	0.6	0
130	Phosphorus modification of supported Pt catalysts for carbon monoxide hydrogenation. Reaction Kinetics and Catalysis Letters, 1987, 34, 451-456.	0.6	0
131	Synthesis of hydrocarbons from CO and H2 on SiO2 supported iron-cobalt clusters. Russian Chemical Bulletin, 1993, 42, 1032-1038.	0.4	0
132	Novel catalytic processes in the chemical processing of coal. Russian Chemical Bulletin, 1994, 43, 732-739.	0.4	0
133	Resistance of Rosin-Modified Polyester Resin to Thermal Oxidative Degradation. Russian Journal of Applied Chemistry, 2001, 74, 706-707.	0.1	0
134	Title is missing!. Russian Journal of Applied Chemistry, 2002, 75, 675-676.	0.1	0
135	Title is missing!. Russian Journal of Applied Chemistry, 2003, 76, 1014-1016.	0.1	0
136	Road asphalt modifiers based on oil-resistant rubbers and products of thermal transformations of coals. Russian Journal of Applied Chemistry, 2008, 81, 1267-1271.	0.1	0
137	Effect of the ozonization of brown coal from the Kansk-Achinsk Basin on its pyrolysis in a mixture with polyethylene. Solid Fuel Chemistry, 2008, 42, 148-152.	0.2	Ο
138	Sorption of gelatin as a protein marker on a porous substrate of birch bark bast. Catalysis in Industry, 2011, 3, 312-315.	0.3	0
139	Optimization of the Production Process of Biologically-Active Betulin Diacetate from Raw and Activated Birch Bark. Theoretical Foundations of Chemical Engineering, 2018, 52, 664-669.	0.2	0
140	Î ³ -Valerolactone as a promising solvent and basic chemical product. Catalytic synthesis from components of vegetable biomass. Kataliz V Promyshlennosti, 2021, 1, 97-116.	0.2	0
141	New Methods of Lignin Processing into Low Molecular Mass Organic Compounds and Nanoporous Materials. Chemistry for Sustainable Development, 2018, 26, 281-291.	0.0	0