
Donata Iandolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6267180/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Advanced Biology, 2017, 1, 1700052.	3.0	89
2	Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomedical Materials (Bristol), 2012, 7, 035010.	3.3	84
3	Transistor in a tube: A route to three-dimensional bioelectronics. Science Advances, 2018, 4, eaat4253.	10.3	78
4	Conducting Polymer Scaffolds Based on Poly(3,4-ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring. ACS Omega, 2018, 3, 7424-7431.	3.5	55
5	Enzyme Production by Solid Substrate Fermentation of Pleurotus ostreatus and Trametes versicolor on Tomato Pomace. Applied Biochemistry and Biotechnology, 2011, 163, 40-51.	2.9	53
6	Organic Bioelectronics for <i>In Vitro</i> Systems. Chemical Reviews, 2022, 122, 4700-4790.	47.7	49
7	Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components. Journal of the American Chemical Society, 2014, 136, 14245-14254.	13.7	42
8	Development and Characterization of Organic Electronic Scaffolds for Bone Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1505-1512.	7.6	39
9	Controlling the electrochromic properties of conductive polymers using UV-light. Journal of Materials Chemistry C, 2018, 6, 4663-4670.	5.5	36
10	Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Advanced Functional Materials, 2016, 26, 6950-6960.	14.9	31
11	PC12 neuron-like cell response to electrospun poly( 3-hydroxybutyrate) substrates. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 151-161.	2.7	30
12	Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes. Journal of Applied Physics, 2016, 119, .	2.5	30
13	Electron Microscopy for 3D Scaffolds–Cell Biointerface Characterization. Advanced Biology, 2019, 3, e1800103.	3.0	21
14	Fungal solid state fermentation on agro-industrial wastes for acid wastewater decolorization in a continuous flow packed-bed bioreactor. Bioresource Technology, 2011, 102, 7603-7607.	9.6	20
15	Biomimetic and electroactive 3D scaffolds for human neural crest-derived stem cell expansion and osteogenic differentiation. MRS Communications, 2020, 10, 179-187.	1.8	19
16	Synergistic Effect of PVDF-Coated PCL-TCP Scaffolds and Pulsed Electromagnetic Field on Osteogenesis. International Journal of Molecular Sciences, 2021, 22, 6438.	4.1	16
17	Electrical Stimulation of Adipose-Derived Stem Cells in 3D Nanofibrillar Cellulose Increases Their Osteogenic Potential. Biomolecules, 2020, 10, 1696.	4.0	15
18	Osteocytes and Weightlessness. Current Osteoporosis Reports, 2021, 19, 626-636.	3.6	14

Donata Iandolo

#	Article	IF	CITATIONS
19	Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D. Stem Cells International, 2019, 2019, 1-12.	2.5	12
20	BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flexible and Printed Electronics, 2019, 4, 044006.	2.7	11
21	A (bio) materials approach to three-dimensional cell biology. MRS Communications, 2017, 7, 287-288.	1.8	5
22	Aligned Nanofiber Topographies Enhance the Differentiation of Adult Renal Stem Cells into Glomerular Podocytes. Advanced Engineering Materials, 2018, 20, 1800003.	3.5	5
23	Nanostructured, highly aligned poly(hydroxy butyrate) electrospun fibers for differentiation of skeletal and cardiac muscle cells. , 2011, 2011, 3597-600.		2
24	Effects of Pulsed Electromagnetic Field Intensity on Mesenchymal Stem Cells. Bioelectricity, 2021, 3, 186-196.	1.1	2
25	On research culture and mental health. Nature Materials, 2019, 18, 906-906.	27.5	1

3D Biointerfaces: Electron Microscopy for 3D Scaffolds $\hat{a} \in Cell Biointerface Characterization (Adv.) Tj ETQq0 0 0 rg <math>3.0^{-1}$ /Overlock 10 Tf 50 for 3D Scaffolds $\hat{a} \in Cell Biointerface Characterization (Adv.)$

27	A nanomesh that syncs with the heart. Nature Nanotechnology, 2019, 14, 104-105.	31.5 0