Jiangtao Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6266376/publications.pdf

Version: 2024-02-01

331670 377865 1,691 34 21 34 citations h-index g-index papers 35 35 35 2215 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Unprecedented Ultralow Detection Limit of Amines using a Thiadiazole-Functionalized Zr(IV)-Based Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 7245-7249.	13.7	203
2	Asymmetric pore windows in MOF membranes for natural gas valorization. Nature, 2022, 606, 706-712.	27.8	163
3	Porphyrin Boxes: Rationally Designed Porous Organic Cages. Angewandte Chemie - International Edition, 2015, 54, 13241-13244.	13.8	161
4	Enriching the Reticular Chemistry Repertoire: Merged Nets Approach for the Rational Design of Intricate Mixed-Linker Metal–Organic Framework Platforms. Journal of the American Chemical Society, 2018, 140, 8858-8867.	13.7	129
5	A highly porous medical metal–organic framework constructed from bioactive curcumin. Chemical Communications, 2015, 51, 5774-5777.	4.1	120
6	Electrochemical synthesis of continuous metal–organic framework membranes for separation of hydrocarbons. Nature Energy, 2021, 6, 882-891.	39.5	115
7	Covalent Organic Frameworks as Negative Electrodes for Highâ€Performance Asymmetric Supercapacitors. Advanced Energy Materials, 2020, 10, 2001673.	19.5	107
8	A novel low density metal–organic framework with pcu topology by dendritic ligand. Chemical Communications, 2011, 47, 9167.	4.1	63
9	Access to Highly Efficient Energy Transfer in Metal–Organic Frameworks via Mixed Linkers Approach. Journal of the American Chemical Society, 2020, 142, 8580-8584.	13.7	62
10	Highly porous and robust ionic MOFs with nia topology constructed by connecting an octahedral ligand and a trigonal prismatic metal cluster. Chemical Communications, 2012, 48, 6010.	4.1	55
11	Solvent-Induced Single Crystal To Single Crystal Transformation and Complete Metal Exchange of a Pyrene-Based Metal–Organic Framework. Crystal Growth and Design, 2014, 14, 1738-1743.	3.0	51
12	Growth of large single MOF crystals and effective separation of organic dyes. CrystEngComm, 2013, 15, 4094.	2.6	50
13	Extremely Hydrophobic POPs to Access Highly Porous Storage Media and Capturing Agent for Organic Vapors. CheM, 2019, 5, 180-191.	11.7	42
14	Fluorescent Dodecapus in 3D Framework. Crystal Growth and Design, 2014, 14, 4258-4261.	3.0	41
15	The Adsorption and Simulated Separation of Light Hydrocarbons in Isoreticular Metal–Organic Frameworks Based on Dendritic Ligands with Different Aliphatic Side Chains. Chemistry - A European Journal, 2014, 20, 9073-9080.	3.3	40
16	Syntheses, structures and luminescence properties of three metal–organic frameworks based on 5-(4-(2H-tetrazol-5-yl)phenoxy)isophthalic acid. CrystEngComm, 2014, 16, 339-343.	2.6	39
17	A spontaneously resoluted zinc–organic framework with nonlinear optical and ferroelectric properties generated from tetrazolate-ethyl ester ligand. CrystEngComm, 2010, 12, 3499.	2.6	33
18	Made-to-order porous electrodes for supercapacitors: MOFs embedded with redox-active centers as a case study. Chemical Communications, 2020, 56, 1883-1886.	4.1	31

#	Article	IF	CITATIONS
19	Using Dissolution and Pharmacokinetics Studies of Crystal Form to Optimize the Original Iloperidone. Crystal Growth and Design, 2013, 13, 5261-5266.	3.0	23
20	Metal–Organic Frameworks in Mixed-Matrix Membranes for High-Speed Visible-Light Communication. Journal of the American Chemical Society, 2022, 144, 6813-6820.	13.7	23
21	Fabrication of triazine-based Porous Aromatic Framework (PAF) membrane with structural flexibility for gas mixtures separation. Journal of Industrial and Engineering Chemistry, 2018, 67, 373-379.	5.8	21
22	Trigonal prism or octahedron: the conformational change of a dendritic six-node ligand in MOFs. Journal of Materials Chemistry A, 2013, 1, 10112.	10.3	20
23	Dissolution and pharmacokinetic properties of two paliperidone cocrystals with 4-hydroxybenzoic and 4-aminobenzoic acid. CrystEngComm, 2014, 16, 7667.	2.6	14
24	Synthesis, characterization and dissolution of three pharmaceutical cocrystals based on deferiprone. Journal of Molecular Structure, 2016, 1108, 560-566.	3.6	13
25	Carbonization of covalent triazine-based frameworks <i>via</i> ionic liquid induction. Journal of Materials Chemistry A, 2018, 6, 15564-15568.	10.3	13
26	Mixed-integer Linear Programming Formulation for Short-term Scheduling of Cascaded Hydroelectric Plants with Pumped-storage Units. Electric Power Components and Systems, 2013, 41, 1456-1468.	1.8	10
27	Directional Exciton Migration in Benzoimidazole-Based Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2021, 12, 4917-4927.	4.6	10
28	Three pharmaceuticals cocrystals of adefovir: Syntheses, structures and dissolution study. Journal of Molecular Structure, 2015, 1100, 395-400.	3.6	9
29	Syntheses and pharmacokinetics properties of an iloperidone pharmaceutical cocrystal. Inorganic Chemistry Communication, 2014, 39, 144-146.	3.9	8
30	Reticular Chemistry for the Construction of Highly Porous Aluminum-Based nia -Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10661-10666.	4.0	8
31	Ultrafast Aggregation-Induced Tunable Emission Enhancement in a Benzothiadiazole-Based Fluorescent Metal–Organic Framework Linker. Journal of Physical Chemistry B, 2021, 125, 13298-13308.	2.6	5
32	Three metal–organic coordination polymers constructed by 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene. Journal of Molecular Structure, 2013, 1047, 338-343.	3.6	4
33	Design and Synthesis of a Metal-organic Framework with nia Topology. Acta Chimica Sinica, 2013, 71, 1492.	1.4	4
34	Unusual design strategy for a stable and soluble high-molecular-weight copper(<scp>i</scp>) arylacetylide polymer. Chemical Communications, 2021, 57, 12004-12007.	4.1	1