
Marcelo Mira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6265825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Susceptibility to leprosy is associated with PARK2 and PACRG. Nature, 2004, 427, 636-640.	27.8	426
2	Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nature Genetics, 2003, 33, 412-415.	21.4	164
3	Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy. Nature Genetics, 2007, 39, 517-522.	21.4	152
4	A critical review: an overview of genetic influence on dental caries. Oral Diseases, 2010, 16, 613-623.	3.0	85
5	Genetic dissection of immunity in leprosy. Current Opinion in Immunology, 2005, 17, 44-48.	5.5	80
6	Genetic and Immunological Evidence Implicates Interleukin 6 as a Susceptibility Gene for Leprosy Type 2 Reaction. Journal of Infectious Diseases, 2012, 205, 1417-1424.	4.0	54
7	Vitiligo - Part 1. Anais Brasileiros De Dermatologia, 2014, 89, 461-470.	1.1	53
8	Vitiligo - Part 2 - classification, histopathology and treatment. Anais Brasileiros De Dermatologia, 2014, 89, 784-790.	1.1	53
9	Toll-like Receptor 1 N248S Single-Nucleotide Polymorphism Is Associated With Leprosy Risk and Regulates Immune Activation During Mycobacterial Infection. Journal of Infectious Diseases, 2013, 208, 120-129.	4.0	51
10	Genetic host resistance and susceptibility to leprosy. Microbes and Infection, 2006, 8, 1124-1131.	1.9	50
11	Association between Vitamin D Receptor Gene Polymorphisms and Susceptibility to Chronic Kidney Disease and Periodontitis. Blood Purification, 2007, 25, 411-419.	1.8	48
12	Leprosy and HIV Coinfection: A Clinical, Pathological, Immunological, and Therapeutic Study of a Cohort from a Brazilian Referral Center for Infectious Diseases. Journal of Infectious Diseases, 2010, 202, 345-354.	4.0	48
13	NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Human Genetics, 2014, 133, 1525-1532.	3.8	48
14	Susceptibility to Leprosy is Associated with M-ficolin Polymorphisms. Journal of Clinical Immunology, 2013, 33, 210-219.	3.8	43
15	Genetics of leprosy reactions: an overview. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 132-142.	1.6	41
16	TNF -308G>A Single Nucleotide Polymorphism Is Associated With Leprosy Among Brazilians: A Genetic Epidemiology Assessment, Meta-Analysis, and Functional Study. Journal of Infectious Diseases, 2011, 204, 1256-1263.	4.0	40
17	A Major Gene Controls Leprosy Susceptibility in a Hyperendemic Isolated Population from North of Brazil. Journal of Infectious Diseases, 2010, 201, 1598-1605.	4.0	38
18	Emended description of the genus Phytobacter, its type species Phytobacter diazotrophicus (Zhang) Tj ETQq0 0	0 rgBT /0 1.7	verlock 10 Tf 37

Evolutionary Microbiology, 2018, 68, 176-184.

#	Article	IF	CITATIONS
19	Leprosy and HIV coinfection: a critical approach. Expert Review of Anti-Infective Therapy, 2011, 9, 701-710.	4.4	31
20	Segregation of HLA/TNF region is linked to leprosy clinical spectrum in families displaying mixed leprosy subtypes. Genes and Immunity, 2003, 4, 67-73.	4.1	30
21	Genetic Variants of the DDR1 Gene Are Associated with Vitiligo in Two Independent Brazilian Population Samples. Journal of Investigative Dermatology, 2010, 130, 1813-1818.	0.7	30
22	Association of TNFSF8 Regulatory Variants With Excessive Inflammatory Responses but not Leprosy Per Se. Journal of Infectious Diseases, 2015, 211, 968-977.	4.0	29
23	Emergence and Transmission of Drug-/Multidrug-resistant Mycobacterium leprae in a Former Leprosy Colony in the Brazilian Amazon. Clinical Infectious Diseases, 2020, 70, 2054-2061.	5.8	29
24	Genetics of leprosy: Expected and unexpected developments and perspectives. Clinics in Dermatology, 2015, 33, 99-107.	1.6	28
25	Phage Display and Synthetic Peptides as Promising Biotechnological Tools for the Serological Diagnosis of Leprosy. PLoS ONE, 2014, 9, e106222.	2.5	26
26	A Major Gene Effect Controls Resistance to Caries. Journal of Dental Research, 2011, 90, 735-739.	5.2	24
27	Genetic Susceptibility to Leprosy—From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Frontiers in Immunology, 2018, 9, 1674.	4.8	21
28	Human Genetic Susceptibility of Leprosy Recurrence. Scientific Reports, 2020, 10, 1284.	3.3	21
29	HansenÃase: uma doença genética?. Anais Brasileiros De Dermatologia, 2007, 82, 451-459.	1.1	20
30	A pattern of association between clinical form of vitiligo and disease-related variables in a Brazilian population. Journal of Dermatological Science, 2012, 65, 63-67.	1.9	20
31	Reduced immunohistochemical expression of Discoidin Domain Receptor 1 (DDR1) in vitiligo skin. Journal of the European Academy of Dermatology and Venereology, 2013, 27, 1057-1059.	2.4	20
32	Polymorphism of the E adherin gene <i><scp>CDH</scp>1</i> is associated with susceptibility to vitiligo. Experimental Dermatology, 2015, 24, 300-302.	2.9	20
33	Influence of KIR genes and their HLA ligands in the pathogenesis of leprosy in a hyperendemic population of RondonÃ ³ polis, Southern Brazil. BMC Infectious Diseases, 2014, 14, 438.	2.9	16
34	Lactotransferrin Gene Polymorphism Associated with Caries Experience. Caries Research, 2015, 49, 370-377.	2.0	16
35	Association Analysis Suggests <i>SOD2</i> as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility. Journal of Infectious Diseases, 2016, 214, 475-478.	4.0	16
36	Combining diagnostic procedures for the management of leishmaniasis in areas with high prevalence of Leishmania guyanensis. Anais Brasileiros De Dermatologia, 2011, 86, 1141-1144.	1.1	15

#	Article	IF	CITATIONS
37	Identification of mimotopes of Mycobacterium leprae as potential diagnostic reagents. BMC Infectious Diseases, 2013, 13, 42.	2.9	15
38	Molecular investigation of isolates from a multistate polymicrobial outbreak associated with contaminated total parenteral nutrition in Brazil. BMC Infectious Diseases, 2018, 18, 397.	2.9	15
39	Genetics of leprosy: Expected—and unexpected—developments and perspectives. Clinics in Dermatology, 2016, 34, 96-104.	1.6	14
40	Complete physical mapping of <i><scp>IL</scp>6</i> reveals a new marker associated with chronic periodontitis. Journal of Periodontal Research, 2017, 52, 255-261.	2.7	14
41	Sustained Presence of Cutaneous Leishmaniasis in Urban Manaus, the Largest Human Settlement in the Amazon. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1208-1213.	1.4	12
42	Complex segregation analysis of facial melasma in Brazil: evidence for a genetic susceptibility with a dominant pattern of segregation. Archives of Dermatological Research, 2018, 310, 827-831.	1.9	11
43	Genomewide Linkage Analysis of the Granulomatous Mitsuda Reaction Implicates Chromosomal Regions 2q35 and 17q21. Journal of Infectious Diseases, 2007, 196, 1248-1252.	4.0	8
44	Genetic and biochemical evidence implicates the butyrylcholinesterase gene <i><scp>BCHE</scp></i> in vitiligo pathogenesis. Experimental Dermatology, 2015, 24, 976-978.	2.9	8
45	Genetic risk factors for human susceptibility to infections of relevance in dermatology. Anais Brasileiros De Dermatologia, 2011, 86, 708-715.	1.1	7
46	Hydroa vacciniformeâ€like lymphoma in a patient from the Brazilian Amazon. International Journal of Dermatology, 2013, 52, 641-643.	1.0	7
47	Variations in Leprosy Manifestations among HIV-Positive Patients, Manaus, Brazil. Emerging Infectious Diseases, 2009, 15, 673-674.	4.3	6
48	Investigation of Association between Susceptibility to Leprosy and SNPs inside and near the <i>BCHE</i> Gene of Butyrylcholinesterase. Journal of Tropical Medicine, 2012, 2012, 1-6.	1.7	6
49	Association study between vitiligo and autoimmuneâ€related genes <i>CYP27B1, REL, TNFAIP3, IL2</i> and <i>IL21</i> . Experimental Dermatology, 2020, 29, 535-538.	2.9	6
50	Absence of HTLV-1/2 infection and dermatological diseases in Manaus, State of Amazonas, Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2014, 47, 507-509.	0.9	5
51	Role of peripheral blood minimum residual disease at day 8 of induction therapy in high-risk pediatric patients with acute lymphocytic leukemia. Scientific Reports, 2016, 6, 31179.	3.3	5
52	HLA-DPB1 and HLA-C alleles are associated with leprosy in a Brazilian population. Human Immunology, 2021, 82, 11-18.	2.4	5
53	Post-ART Epidermodysplasia Verruciformis in a Patient With AIDS. Journal of the International Association of Providers of AIDS Care, 2010, 9, 10-14.	1.2	3
54	Association of <i>MICA</i> and HLAâ€B alleles with leprosy in two endemic populations in Brazil. International Journal of Immunogenetics, 2021, 48, 25-35.	1.8	3

#	Article	IF	CITATIONS
55	Resolving taxonomic confusion: establishing the genus Phytobacter on the list of clinically relevant Enterobacteriaceae. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 547-558.	2.9	3
56	PCR-restriction fragment length polymorphism analysis as a tool for Mycobacterium species identification in lepromas for lepromin production. Leprosy Review, 2009, 80, 129-42.	0.3	2
57	Genetics of Leprosy. , 2012, , 19-26.		1
		0.3	2