
Rebecca L Poulson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6265529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Avian influenza virus in water: Infectivity is dependent on pH, salinity and temperature. Veterinary Microbiology, 2009, 136, 20-26.	0.8	259
2	Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: Potential tools for control of female feeding and reproduction. Insect Biochemistry and Molecular Biology, 2008, 38, 176-189.	1.2	170
3	Heterogeneous Feeding Patterns of the Dengue Vector, Aedes aegypti, on Individual Human Hosts in Rural Thailand. PLoS Neglected Tropical Diseases, 2014, 8, e3048.	1.3	93
4	Influenza-A Viruses in Ducks in Northwestern Minnesota: Fine Scale Spatial and Temporal Variation in Prevalence and Subtype Diversity. PLoS ONE, 2011, 6, e24010.	1.1	92
5	Avian Influenza Virus in Aquatic Habitats: What Do We Need to Learn?. Avian Diseases, 2010, 54, 461-465.	0.4	90
6	The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9033-9038.	3.3	62
7	Competition between influenza A virus subtypes through heterosubtypic immunity modulates re-infection and antibody dynamics in the mallard duck. PLoS Pathogens, 2017, 13, e1006419.	2.1	53
8	Highly pathogenic avian influenza is an emerging disease threat to wild birds in North America. Journal of Wildlife Management, 2022, 86, .	0.7	43
9	Considerations for Accurate Identification of Adult <i>Culex restuans</i> (Diptera: Culicidae) in Field Studies. Journal of Medical Entomology, 2008, 45, 1-8.	0.9	39
10	Susceptibility of Avian Species to North American H13 Low Pathogenic Avian Influenza Viruses. Avian Diseases, 2012, 56, 969-975.	0.4	39
11	Evidence for Seasonal Patterns in the Relative Abundance of Avian Influenza Virus Subtypes in Blue-Winged Teal (Anas discors). Journal of Wildlife Diseases, 2014, 50, 916-922.	0.3	36
12	ARE PASSERINE BIRDS RESERVOIRS FOR INFLUENZA A VIRUSES?. Journal of Wildlife Diseases, 2014, 50, 792-809.	0.3	33
13	Introduction of Eurasian-Origin Influenza A(H8N4) Virus into North America by Migratory Birds. Emerging Infectious Diseases, 2018, 24, 1950-1953.	2.0	33
14	Influenza A viruses remain infectious for more than seven months in northern wetlands of North America. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201680.	1.2	33
15	Whole-genome sequencing of genotype VI Newcastle disease viruses from formalin-fixed paraffin-embedded tissues from wild pigeons reveals continuous evolution and previously unrecognized genetic diversity in the U.S Virology Journal, 2018, 15, 9.	1.4	31
16	INTESTINAL EXCRETION OF A WILD BIRD-ORIGIN H3N8 LOW PATHOGENIC AVIAN INFLUENZA VIRUS IN MALLARDS (ANAS PLATYRHYNCHOS). Journal of Wildlife Diseases, 2012, 48, 991-998.	0.3	30
17	Use of FTA® Sampling Cards for Molecular Detection of Avian Influenza Virus in Wild Birds. Avian Diseases, 2012, 56, 200-207.	0.4	27
18	The First 10 Years (2006–15) of Epizootic Hemorrhagic Disease Virus Serotype 6 in the USA. Journal of Wildlife Diseases, 2017, 53, 901-905.	0.3	24

REBECCA L POULSON

#	Article	IF	CITATIONS
19	Isolation of Influenza A Viruses from Wild Ducks and Feathers in Minnesota (2010–2011). Avian Diseases, 2013, 57, 677-680.	0.4	23
20	Genomic Characterization of H14 Subtype Influenza A Viruses in New World Waterfowl and Experimental Infectivity in Mallards (Anas platyrhynchos). PLoS ONE, 2014, 9, e95620.	1.1	23
21	Influenza A virus recovery, diversity, and intercontinental exchange: A multi-year assessment of wild bird sampling at Izembek National Wildlife Refuge, Alaska. PLoS ONE, 2018, 13, e0195327.	1.1	23
22	Subtype Diversity of Influenza A Virus in North American Waterfowl: a Multidecade Study. Journal of Virology, 2020, 94, .	1.5	23
23	Canada Geese and the Epidemiology of Avian Influenza Viruses. Journal of Wildlife Diseases, 2010, 46, 981-987.	0.3	22
24	Identification of Avian Coronavirus in Wild Aquatic Birds of the Central and Eastern USA. Journal of Wildlife Diseases, 2015, 51, 218-221.	0.3	20
25	Improved detection of influenza A virus from blueâ€winged teals by sequencing directly from swab material. Ecology and Evolution, 2019, 9, 6534-6546.	0.8	18
26	Randomly primed, strand-switching, MinION-based sequencing for the detection and characterization of cultured RNA viruses. Journal of Veterinary Diagnostic Investigation, 2021, 33, 202-215.	0.5	18
27	Assessment of contemporary genetic diversity and inter-taxa/inter-region exchange of avian paramyxovirus serotype 1 in wild birds sampled in North America. Virology Journal, 2017, 14, 43.	1.4	17
28	Influenza A virus: sampling of the unique shorebird habitat at Delaware Bay, USA. Royal Society Open Science, 2017, 4, 171420.	1.1	17
29	Evidence for interannual persistence of infectious influenza A viruses in Alaska wetlands. Science of the Total Environment, 2022, 803, 150078.	3.9	17
30	Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. Journal of Virology, 2020, 94, .	1.5	16
31	Infectivity of Avian Influenza Virus-Positive Field Samples for Mallards: What Do Our Diagnostic Results Mean?. Journal of Wildlife Diseases, 2013, 49, 180-185.	0.3	14
32	Antibodies to Influenza A Viruses in Wintering Snow Geese (<i>Chen caerulescens</i>) in Texas. Avian Diseases, 2016, 60, 337-340.	0.4	14
33	Potential for Low-Pathogenic Avian H7 Influenza A Viruses To Replicate and Cause Disease in a Mammalian Model. Journal of Virology, 2017, 91, .	1.5	14
34	Limited evidence of intercontinental dispersal of avian paramyxovirus serotype 4 by migratory birds. Infection, Genetics and Evolution, 2016, 40, 104-108.	1.0	13
35	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	1.3	12
36	Surveillance for Eurasian-origin and intercontinental reassortant highly pathogenic influenza A viruses in Alaska, spring and summer 2015. Virology Journal, 2016, 13, 55.	1.4	11

REBECCA L POULSON

#	Article	IF	CITATIONS
37	Antibodies to Influenza A Viruses in Gulls at Delaware Bay, USA. Avian Diseases, 2016, 60, 341-345.	0.4	9
38	Prevalence of Influenza A Viruses in Ducks Sampled in Northwestern Minnesota and Evidence for Predominance of H3N8 and H4N6 Subtypes in Mallards, 2007–2016. Avian Diseases, 2018, 63, 126.	0.4	9
39	Maintenance and dissemination of avian-origin influenza A virus within the northern Atlantic Flyway of North America. PLoS Pathogens, 2022, 18, e1010605.	2.1	9
40	A lesser scaup (<i>Aythya affinis</i>) naturally infected with Eurasian 2.3.4.4 highly pathogenic H5N1 avian influenza virus: Movement ecology and host factors. Transboundary and Emerging Diseases, 2022, 69, .	1.3	9
41	Influenza A Prevalence and Subtype Diversity in Migrating Teal Sampled Along the United States Gulf Coast. Avian Diseases, 2018, 63, 165.	0.4	8
42	Emperor geese (<i>Anser canagicus</i>) are exposed to a diversity of influenza A viruses, are infected during the nonâ€breeding period and contribute to intercontinental viral dispersal. Transboundary and Emerging Diseases, 2019, 66, 1958-1970.	1.3	7
43	Experimental Infection of European Starlings (Sturnus vulgaris) and House Sparrows (Passer) Tj ETQq1 1 0.7843 Journal of Wildlife Diseases, 2013, 49, 437-440.	14 rgBT /C 0.3	Overlock 10 T 6
44	Sampling of Sea Ducks for Influenza A Viruses in Alaska during Winter Provides Lack of Evidence for Epidemiologic Peak of Infection. Journal of Wildlife Diseases, 2015, 51, 938.	0.3	6
45	Evidence for wild waterfowl origin of H7N3 influenza A virus detected in captive-reared New Jersey pheasants. Archives of Virology, 2016, 161, 2519-2526.	0.9	6
46	Field-based method for assessing duration of infectivity for influenza A viruses in the environment. Journal of Virological Methods, 2020, 277, 113818.	1.0	6
47	Influenza A Viruses in Ruddy Turnstones (Arenaria interpres); Connecting Wintering and Migratory Sites with an Ecological Hotspot at Delaware Bay. Viruses, 2020, 12, 1205.	1.5	6
48	VIRUS ISOLATION AND MOLECULAR DETECTION OF BLUETONGUE AND EPIZOOTIC HEMORRHAGIC DISEASE VIRUSES FROM NATURALLY INFECTED WHITE-TAILED DEER (<i>ODOCOILEUS VIRGINIANUS</i>). Journal of Wildlife Diseases, 2017, 53, 843-849.	0.3	5
49	Wild Bird Surveillance for Avian Influenza Virus. Methods in Molecular Biology, 2014, 1161, 69-81.	0.4	5
50	Avian Influenza Virus Status and Maternal Antibodies in Nestling White Ibis (Eudocimus albus). Microorganisms, 2021, 9, 2468.	1.6	5
51	Putative Novel Avian Paramyxovirus (AMPV) and Reidentification of APMV-2 and APMV-6 to the Species Level Based on Wild Bird Surveillance (United States, 2016–2018). Applied and Environmental Microbiology, 2022, 88, .	1.4	5
52	Influenza A Viruses in American White Pelican (Pelecanus erythrorhynchos). Journal of Wildlife Diseases, 2010, 46, 1284-1289.	0.3	4
53	Wild Bird Surveillance for Avian Influenza Virus. Methods in Molecular Biology, 2020, 2123, 93-112.	0.4	4
54	Effects of Temperature and pH on the Persistence of Avian Paramyxovirus-1 in Water. Journal of Wildlife Diseases, 2014, 50, 998-1000.	0.3	3

0

#	Article	IF	CITATIONS
55	NEUTRALIZING ANTIBODIES TO TYPE A INFLUENZA VIRUSES IN SHOREBIRDS AT DELAWARE BAY, NEW JERSEY, USA. Journal of Wildlife Diseases, 2018, 54, 708-715.	0.3	3
56	EXPERIMENTAL INFECTIONS AND SEROLOGY INDICATE THAT AMERICAN WHITE IBIS (EUDOCIUMUS ALBUS) ARE COMPETENT RESERVOIRS FOR TYPE A INFLUENZA VIRUS. Journal of Wildlife Diseases, 2020, 56, 530.	0.3	3
57	Isolation of Type A Influenza Viruses from Red-necked Grebes (<i>Podiceps grisegena</i>). Journal of Wildlife Diseases, 2015, 51, 290-293.	0.3	2
58	The Genome Sequence of an H6N5 Influenza A Virus Strain Isolated from a Northern Pintail (Anas) Tj ETQq0 0 0 r Microbiology Resource Announcements, 2020, 9, .	gBT /Over 0.3	lock 10 Tf 50 2
59	Naturally Acquired Antibodies to Influenza A Virus in Fall-Migrating North American Mallards. Veterinary Sciences, 2022, 9, 214.	0.6	2
60	Genome Sequence of a Novel H14N7 Subtype Influenza A Virus Isolated from a Blue-Winged Teal () Tj ETQq0 0 0	rgBT /Ove	erlock 10 Tf 5
61	Reply to Ramey et al.: Let time be the arbiter. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6553-E6554.	3.3	1
62	SUSCEPTIBILITY OF LAUGHING GULLS (LEUCOPHAEUS ATRICILLA) AND MALLARDS (ANAS PLATYRHYNCHOS) TO RUDDY TURNSTONE (ARENARIA INTERPRES MORINELLA) ORIGIN TYPE A INFLUENZA VIRUSES. Journal of Wildlife Diseases, 2020, 56, 167.	0.3	1
63	LIMITED DETECTION OF ANTIBODIES TO CLADE 2.3.4.4 A/GOOSE/GUANGDONG/1/1996 LINEAGE HIGHLY PATHOGENIC H5 AVIAN INFLUENZA VIRUS IN NORTH AMERICAN WATERFOWL. Journal of Wildlife Diseases, 2020, 56, 47-57.	0.3	1
64	Influenza A Viruses in Whistling Ducks (Subfamily Dendrocygninae). Viruses, 2021, 13, 192.	1.5	0
65	Coding-Complete Genome Sequence of <i>Avian orthoavulavirus 16</i> , Isolated from Emperor Goose (Anser canagicus) Feces, Alaska, USA. Microbiology Resource Announcements, 2021, 10, .	0.3	Ο

66SUSCEPTIBILITY OF LAUGHING GULLS () AND MALLARDS () TO RUDDY TURNSTONE () ORIGIN TYPE A
INFLUENZA VIRUSES. Journal of Wildlife Diseases, 2020, 56, 167-174.0.3