Viola Spahn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6265288/publications.pdf

Version: 2024-02-01

687363 794594 20 694 13 19 h-index citations g-index papers 22 22 22 899 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Interleukin-4 Induces the Release of Opioid Peptides from M1 Macrophages in Pathological Pain. Journal of Neuroscience, 2021, 41, 2870-2882.	3.6	16
2	PatchÂClamp Analysis of Opioid-Induced Kir3 Currents in Mouse Peripheral Sensory Neurons Following Nerve Injury. Methods in Molecular Biology, 2021, 2201, 127-137.	0.9	1
3	A low pKa ligand inhibits cancer-associated pain in mice by activating peripheral mu-opioid receptors. Scientific Reports, 2020, 10, 18599.	3. 3	7
4	Modulation of μâ€opioid receptor activation by acidic pH is dependent on ligand structure and an ionizable amino acid residue. British Journal of Pharmacology, 2019, 176, 4510-4520.	5 . 4	18
5	pKa of opioid ligands as a discriminating factor for side effects. Scientific Reports, 2019, 9, 19344.	3 . 3	19
6	Analgesic effects of a novel pH-dependent $\hat{l}\frac{1}{4}$ -opioid receptor agonist in models of neuropathic and abdominal pain. Pain, 2018, 159, 2277-2284.	4.2	51
7	Mu-Opioid Receptor Agonist Induces Kir3 Currents in Mouse Peripheral Sensory Neurons – Effects of Nerve Injury. Frontiers in Pharmacology, 2018, 9, 1478.	3.5	13
8	Opioid receptor signaling, analgesic and side effects induced by a computationally designed pH-dependent agonist. Scientific Reports, 2018, 8, 8965.	3.3	47
9	Ankyrinâ€rich membrane spanning protein as a novel modulator of transient receptor potential vanilloid 1â€function in nociceptive neurons. European Journal of Pain, 2017, 21, 1072-1086.	2.8	4
10	A nontoxic pain killer designed by modeling of pathological receptor conformations. Science, 2017, 355, 966-969.	12.6	175
11	Production of G proteinâ€coupled receptors in an insectâ€based cellâ€free system. Biotechnology and Bioengineering, 2017, 114, 2328-2338.	3.3	29
12	Novel Opioid Analgesics and Side Effects. ACS Chemical Neuroscience, 2017, 8, 1638-1640.	3 . 5	52
13	Targeting delta opioid receptors for pain treatment: drugs in phase I and II clinical development. Expert Opinion on Investigational Drugs, 2017, 26, 155-160.	4.1	37
14	Polyglycerol-opioid conjugate produces analgesia devoid of side effects. ELife, 2017, 6, .	6.0	32
15	Opioids and TRPV1 in the peripheral control of neuropathic pain – Defining a target site in the injured nerve. Neuropharmacology, 2016, 101, 330-340.	4.1	20
16	Electrophysiological Patch Clamp Assay to Monitor the Action of Opioid Receptors. Methods in Molecular Biology, 2015, 1230, 197-211.	0.9	2
17	Analysis of Potassium and Calcium Imaging to Assay the Function of Opioid Receptors. Methods in Molecular Biology, 2015, 1230, 187-196.	0.9	0
18	Modulation of Transient Receptor Vanilloid 1 Activity by Transient Receptor Potential Ankyrin 1. Molecular Pharmacology, 2014, 85, 335-344.	2.3	79

#	Article	IF	CITATIONS
19	Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner. Pain, 2013, 154, 598-608.	4.2	54
20	Exploiting Fluorescence Lifetime Plasticity in FLIM: Target Molecule Localization in Cells and Tissues. ACS Medicinal Chemistry Letters, 2011, 2, 724-728.	2.8	37