
Wojciech Karlowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6265172/publications.pdf Version: 2024-02-01

WOICIECH KARLOWSKI

#	Article	IF	CITATIONS
1	Cold stressâ€induced miRNA and degradome changes in four soybean varieties differing in chilling resistance. Journal of Agronomy and Crop Science, 2022, 208, 777-794.	3.5	5
2	Biogenesis, conservation, and function of miRNA in liverworts. Journal of Experimental Botany, 2022, 73, 4528-4545.	4.8	16
3	RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic Acids Research, 2021, 49, D212-D220.	14.5	160
4	Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics, 2021, 22, 165.	2.8	14
5	Local Duplication of TIR-NBS-LRR Gene Marks Clubroot Resistance in Brassica napus cv. Tosca. Frontiers in Plant Science, 2021, 12, 639631.	3.6	12
6	Taxonomy-aware, sequence similarity ranking reliably predicts phage–host relationships. BMC Biology, 2021, 19, 223.	3.8	16
7	Quantitative Analysis of Plant Primary Transcripts. Methods in Molecular Biology, 2021, 2170, 53-77.	0.9	4
8	Silencing of HvGSK1.1—A GSK3/SHAGGY-Like Kinase–Enhances Barley (Hordeum vulgare L.) Growth in Normal and in Salt Stress Conditions. International Journal of Molecular Sciences, 2020, 21, 6616.	4.1	11
9	The identification of differentially expressed genes in male and female gametophytes of simple thalloid liverwort Pellia endiviifolia sp. B using an RNA-seq approach. Planta, 2020, 252, 21.	3.2	3
10	Is Polymorphism in the Apoptosis and Inflammatory Pathway Genes Associated With a Primary Response to Anti-TNF Therapy in Crohn's Disease Patients?. Frontiers in Pharmacology, 2020, 11, 1207.	3.5	7
11	TaWAK6 encoding wall-associated kinase is involved in wheat resistance to leaf rust similar to adult plant resistance. PLoS ONE, 2020, 15, e0227713.	2.5	36
12	AthCNV: A Map of DNA Copy Number Variations in the Arabidopsis Genome. Plant Cell, 2020, 32, 1797-1819.	6.6	33
13	Identification of Structural Variants in Two Novel Genomes of Maize Inbred Lines Possibly Related to Glyphosate Tolerance. Plants, 2020, 9, 523.	3.5	4
14	A Functional Network of Novel Barley MicroRNAs and Their Targets in Response to Drought. Genes, 2020, 11, 488.	2.4	5
15	Benchmarking of alignment-free sequence comparison methods. Genome Biology, 2019, 20, 144.	8.8	147
16	RNAcentral: a hub of information for non-coding RNA sequences. Nucleic Acids Research, 2019, 47, D221-D229.	14.5	153
17	Efficiency of PacBio long read correction by 2nd generation Illumina sequencing. Genomics, 2019, 111, 43-49.	2.9	47
18	Defective <scp>XRN</scp> 3â€mediated transcription termination in Arabidopsis affects the expression of protein oding genes. Plant Journal, 2018, 93, 1017-1031.	5.7	31

WOJCIECH KARLOWSKI

#	Article	IF	CITATIONS
19	A stable tRNA-like molecule is generated from the long noncoding RNA <i>GUT15</i> in <i>Arabidopsis</i> . RNA Biology, 2018, 15, 1-13.	3.1	12
20	tRex: A Web Portal for Exploration of tRNA-Derived Fragments in Arabidopsis thaliana. Plant and Cell Physiology, 2018, 59, e1-e1.	3.1	27
21	Genomewide identification of genes involved in the potato response to drought indicates functional evolutionary conservation with <i>Arabidopsis</i> plants. Plant Biotechnology Journal, 2018, 16, 603-614.	8.3	42
22	Annotation and profiling of barley GLYCOGEN SYNTHASE3/Shaggy-like genes indicated shift in organ-preferential expression. PLoS ONE, 2018, 13, e0199364.	2.5	11
23	StarSeeker: an automated tool for mature duplex microRNA sequence identification based on secondary structure modeling of precursor molecule. Journal of Biological Research, 2018, 25, 11.	2.1	3
24	A Role of U12 Intron in Proper Pre-mRNA Splicing of Plant Cap Binding Protein 20 Genes. Frontiers in Plant Science, 2018, 9, 475.	3.6	7
25	ORCAN—a web-based meta-server for real-time detection and functional annotation of orthologs. Bioinformatics, 2017, 33, 1224-1226.	4.1	11
26	Dual Role of the Histone Variant H2A.Z in Transcriptional Regulation of Stress-Response Genes. Plant Cell, 2017, 29, 791-807.	6.6	145
27	Identification and Analysis of WG/GW ARGONAUTE-Binding Domains. Methods in Molecular Biology, 2017, 1640, 241-256.	0.9	0
28	Nicotine affects protein complex rearrangement in <i>Caenorhabditis elegans</i> cells. Drug and Chemical Toxicology, 2017, 40, 470-483.	2.3	4
29	Genetic relationships among resynthesized, semi-resynthesized and natural Brassica napus L. genotypes. Euphytica, 2017, 213, 1.	1.2	6
30	Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the $3\hat{a}\in^2$ end of tRNA precursors. Gene, 2017, 612, 12-18.	2.2	7
31	RNAcentral: a comprehensive database of non-coding RNA sequences. Nucleic Acids Research, 2017, 45, D128-D134.	14.5	174
32	Alignment-free sequence comparison: benefits, applications, and tools. Genome Biology, 2017, 18, 186.	8.8	371
33	Developmental changes in barley microRNA expression profiles coupled with miRNA targets analysis Acta Biochimica Polonica, 2017, 63, 799-809.	0.5	11
34	Assessing 5S ribosomal RNA heterogeneity in Arabidopsis thaliana using short RNA next generation sequencing data. Acta Biochimica Polonica, 2017, 63, 841-844.	0.5	2
35	5SRNAdb: an information resource for 5S ribosomal RNAs. Nucleic Acids Research, 2016, 44, D180-D183.	14.5	42
36	Pathogen-regulated genes in wheat isogenic lines differing in resistance to brown rust Puccinia triticina. BMC Genomics, 2015, 16, 742.	2.8	27

WOJCIECH KARLOWSKI

#	Article	IF	CITATIONS
37	Promoter-based identification of novel non-coding RNAs reveals the presence of dicistronic snoRNA-miRNA genes in Arabidopsis thaliana. BMC Genomics, 2015, 16, 1009.	2.8	20
38	Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Frontiers in Plant Science, 2015, 6, 410.	3.6	192
39	Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biology, 2015, 12, 761-770.	3.1	23
40	The liverwort <i><scp>P</scp>ellia endiviifolia</i> shares microtranscriptomic traits that are common to green algae and land plants. New Phytologist, 2015, 206, 352-367.	7.3	84
41	Expression of miRNAs involved in phosphate homeostasis and senescence is altered in glyphosate-treated maize. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	3
42	mirEX 2.0 - an integrated environment for expression profiling of plant microRNAs. BMC Plant Biology, 2015, 15, 144.	3.6	68
43	Integrative data analysis indicates an intrinsic disordered domain character of Argonaute-binding motifs. Bioinformatics, 2015, 31, 332-339.	4.1	9
44	Remnants of the Legume Ancestral Genome Preserved in Gene-Rich Regions: Insights from Lupinus angustifolius Physical, Genetic, and Comparative Mapping. Plant Molecular Biology Reporter, 2015, 33, 84-101.	1.8	18
45	Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. Journal of Experimental Botany, 2014, 65, 6123-6135.	4.8	153
46	Comparative genomics of Lupinus angustifolius gene-rich regions: BAC library exploration, genetic mapping and cytogenetics. BMC Genomics, 2013, 14, 79.	2.8	25
47	Developmentally regulated expression and complex processing of barley pri-microRNAs. BMC Genomics, 2013, 14, 34.	2.8	43
48	The Plant S1-Like Nuclease Family Has Evolved a Highly Diverse Range of Catalytic Capabilities. Plant and Cell Physiology, 2013, 54, 1064-1078.	3.1	33
49	mirEX: a platform for comparative exploration of plant pri-miRNA expression data. Nucleic Acids Research, 2012, 40, D191-D197.	14.5	50
50	NERD, a Plant-Specific GW Protein, Defines an Additional RNAi-Dependent Chromatin-Based Pathway in Arabidopsis. Molecular Cell, 2012, 48, 121-132.	9.7	134
51	Analysis of OPCRIT results indicate the presence of a novel â€~social functioning' domain and complex structure of other dimensions in the Wielkopolska (Poland) population. Schizophrenia Research, 2012, 138, 223-232.	2.0	8
52	Non-Canonical Processing of Arabidopsis pri-miR319a/b/c Generates Additional microRNAs to Target One RAP2.12 mRNA Isoform. Frontiers in Plant Science, 2012, 3, 46.	3.6	26
53	RESEARCH PAPER Annotating a non-model plant genome – a study on the narrow-leafed lupin. Biotechnologia, 2012, 3, 318-332.	0.9	3
54	Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene, 2011, 485, 53-62.	2.2	13

Wojciech Karlowski

#	Article	IF	CITATIONS
55	Agos—a universal web tool for GW Argonaute-binding domain prediction. Bioinformatics, 2011, 27, 1318-1319.	4.1	11
56	Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation. Plant and Cell Physiology, 2010, 51, 2119-2131.	3.1	188
57	Genome-wide computational identification of WG/GW Argonaute-binding proteins in Arabidopsis. Nucleic Acids Research, 2010, 38, 4231-4245.	14.5	47
58	Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breeding, 2009, 129, 502.	1.9	7
59	Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice. BMC Plant Biology, 2008, 8, 123.	3.6	46
60	Comparative Analysis of the Receptor-Like Kinase Family in Arabidopsis and Rice[W]. Plant Cell, 2004, 16, 1220-1234.	6.6	980
61	Sequence composition and genome organization of maize. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14349-14354.	7.1	290
62	The over-expression of an alfalfa RING-H2 gene induces pleiotropic effects on plant growth and development. Plant Molecular Biology, 2003, 52, 121-133.	3.9	33
63	Comparison of rice and Arabidopsis annotation. Current Opinion in Plant Biology, 2003, 6, 106-112.	7.1	27
64	MOsDB: an integrated information resource for rice genomics. Nucleic Acids Research, 2003, 31, 190-192.	14.5	27