
Emin Ã**‡**dırlı

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Directional solidification of aluminium–copper alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 327, 167-185.	5.6	303
2	Interflake spacings and undercoolings in Al–Si irregular eutectic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 369, 215-229.	5.6	83
3	Solid–liquid surface energy of pivalic acid. Journal of Crystal Growth, 1998, 194, 119-124.	1.5	77
4	Measurements of the microhardness, electrical and thermal properties of the Al–Ni eutectic alloy. Materials & Design, 2012, 34, 707-712.	5.1	64
5	Solid–liquid interfacial energy of camphene. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 270, 343-348.	5.6	62
6	The directional solidification of Pb-Sn alloys. Journal of Materials Science, 2000, 35, 3837-3848.	3.7	62
7	Variation of microindentation hardness with solidification and microstructure parameters in the Al based alloys. Applied Surface Science, 2008, 255, 3071-3078.	6.1	62
8	Dependency of the thermal and electrical conductivity on the temperature and composition of Cu in the Al based Al–Cu alloys. Experimental Thermal and Fluid Science, 2010, 34, 1507-1516.	2.7	62
9	Effect of solidification parameters on mechanical properties of directionally solidified Al-Rich Al-Cu alloys. Metals and Materials International, 2013, 19, 411-422.	3.4	60
10	The dependence of lamellar spacing on growth rate and temperature gradient in the lead–tin eutectic alloy. Journal of Materials Processing Technology, 2000, 97, 74-81.	6.3	59
11	Directional solidification of Al–Cu–Ag alloy. Applied Physics A: Materials Science and Processing, 2009, 95, 923-932.	2.3	59
12	Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb–Cd eutectic alloy. Materials Research Bulletin, 2003, 38, 1457-1476.	5.2	56
13	Experimental investigation of the effect of solidification processing parameters on the rod spacings in the Sn–1.2wt.% Cu alloy. Journal of Alloys and Compounds, 2009, 486, 199-206.	5.5	44
14	Influence of growth rate on microstructure, microhardness, and electrical resistivity of directionally solidified Al-7 wt% Ni hypo-eutectic alloy. Metals and Materials International, 2013, 19, 39-44.	3.4	44
15	The effect of growth rate on microstructure and microindentation hardness in the In–Bi–Sn ternary alloy at low melting point. Journal of Alloys and Compounds, 2009, 470, 150-156.	5.5	43
16	Solid–liquid interfacial energy in the Al–Ti system. Materials Letters, 2004, 58, 3067-3073.	2.6	40
17	Dendritic Growth in an Aluminum-Silicon Alloy. Journal of Materials Engineering and Performance, 2007, 16, 12-21.	2.5	40
18	Effect of heat treatments on the microhardness and tensile strength of Al–0.25 wt.% Zr alloy. Journal of Alloys and Compounds, 2015, 632, 229-237.	5.5	40

#	Article	IF	CITATIONS
19	Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb-Cd, Sn-Zn and Bi-Cd eutectic alloys. Journal of Materials Science, 2004, 39, 6571-6576.	3.7	39
20	Effect of solidification processing parameters on the cellular spacings in the Al–0.1wt% Ti and Al–0.5wt% Ti alloys. Journal of Alloys and Compounds, 2007, 439, 114-127.	5.5	38
21	Effect of heat treatment on the microstructures and mechanical properties of Al-5.5Zn-2.5Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 144-156.	5.6	37
22	Dependency of microindentation hardness on solidification processing parameters and cellular spacing in the directionally solidified Al based alloys. Journal of Alloys and Compounds, 2009, 478, 281-286.	5.5	36
23	Dependency of the microstructure parameters on the solidification parameters for camphene. Materials Research Bulletin, 2000, 35, 985-995.	5.2	34
24	Determination of mechanical, electrical and thermal properties of the Sn―Bi―Zn ternary alloy. Journal of Non-Crystalline Solids, 2011, 357, 2876-2881.	3.1	33
25	Effect of Growth Rates and Temperature Gradients on the Spacing and Undercooling in the Broken-Lamellar Eutectic Growth (Sn-Zn Eutectic System). Journal of Materials Engineering and Performance, 2003, 12, 456-469.	2.5	32
26	Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al–based quaternary alloys. Journal of Alloys and Compounds, 2017, 694, 471-479.	5.5	32
27	Effect of growth rate and composition on the primary spacing, the dendrite tip radius and mushy zone depth in the directionally solidified succinonitrile–Salol alloys. Journal of Crystal Growth, 2003, 255, 190-203.	1.5	30
28	Effect of rotating magnetic field on the microstructures and physical properties of Al–Cu–Co ternary eutectic alloy. Journal of Alloys and Compounds, 2015, 647, 471-480.	5.5	29
29	Characterization of rapidly solidified Ni–Si and Co–Al eutectic alloys in drop tube. Journal of Non-Crystalline Solids, 2010, 356, 461-466.	3.1	27
30	Dependency of the dendritic arm spacings and tip radius on the growth rate and composition in the directionally solidified succinonitrile–carbon tetrabromide alloys. Journal of Crystal Growth, 2005, 276, 583-593.	1.5	26
31	Directional solidification and characterization of the Cd–Sn eutectic alloy. Journal of Alloys and Compounds, 2007, 431, 171-179.	5.5	26
32	Variations of microhardness with solidification parameters and electrical resistivity with temperature for Al–Cu–Ag eutectic alloy. Current Applied Physics, 2012, 12, 7-10.	2.4	25
33	Eutectic growth of unidirectionally solidified bismuth–cadmium alloy. Journal of Materials Processing Technology, 2007, 183, 310-320.	6.3	23
34	Dependence of Electrical Resistivity on Temperature and Sn Content in Pb-Sn Solders. Journal of Electronic Materials, 2011, 40, 195-200.	2.2	22
35	Dependency of thermal and electrical conductivity on temperature and composition of Sn in Pb–Sn alloys. Fluid Phase Equilibria, 2010, 295, 60-67.	2.5	21
36	Interfacial energy of solid In2Bi intermetallic phase in equilibrium with In–Bi eutectic liquid at 72°C equilibrating temperature. Materials Characterization, 2008, 59, 1101-1110.	4.4	20

#	Article	IF	CITATIONS
37	Directional cellular growth of Al-2Âwt% Li bulk samples. Applied Physics A: Materials Science and Processing, 2009, 94, 155-165.	2.3	20
38	Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3040-3051.	2.2	19
39	Dependency of Microstructural Parameters and Microindentation Hardness on the Temperature Gradient in the In-Bi-Sn Ternary Alloy with a Low Melting Point. Metals and Materials International, 2008, 14, 575-582.	3.4	18
40	Measurements of Microhardness and Thermal and Electrical Properties of the Binary Zn-0.7wt.%Cu Hypoperitectic Alloy. Journal of Electronic Materials, 2010, 39, 303-311.	2.2	17
41	Measurement of solid–liquid interfacial energy in the In–Bi eutectic alloy at low melting temperature. Journal of Physics Condensed Matter, 2007, 19, 506102.	1.8	16
42	Investigation of the effect of solidification processing parameters on the rod spacings and variation of microhardness with the rod spacing in the Sn–Cu hypereutectic alloy. Journal of Materials Science: Materials in Electronics, 2010, 21, 608-618.	2.2	15
43	Investigation of the effect of solidification processing parameters on microhardness and determination of thermo–physical properties in the Zn–Cu peritectic alloy. Journal of Alloys and Compounds, 2010, 491, 143-148.	5.5	15
44	The effects of temperature gradient and growth rate on the microstructure of directionally solidified Sn–3.5Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 2012, 23, 484-492.	2.2	15
45	Microstructural Evolution and Mechanical Properties in Directionally Solidified Sn–10.2 Sb Peritectic Alloy at a Constant Temperature Gradient. Materials Research, 2016, 19, 370-378.	1.3	15
46	Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5911-5923.	2.2	15
47	Unidirectional solidification of Zn-rich Zn-Cu hypoperitectic alloy. Journal of Materials Research, 2009, 24, 3422-3431.	2.6	14
48	Thermal conductivity and interfacial energies of solid Sn in the Sn–Cu alloy. Chemical Physics Letters, 2010, 484, 219-224.	2.6	14
49	Investigation of microhardness and thermo-electrical properties in the Sn–Cu hypereutectic alloy. Journal of Materials Science: Materials in Electronics, 2010, 21, 468-474.	2.2	13
50	Investigation of the effect of composition on microhardness and determination of thermo-physical properties in the Zn–Cu alloys. Materials & Design, 2011, 32, 900-906.	5.1	13
51	Investigation of the Some Physical Properties of the Directionally Solidified Al–Cu–Co Ternary Eutectic Alloy. Transactions of the Indian Institute of Metals, 2015, 68, 817-827.	1.5	13
52	Dendritic solidification and characterization of a succinonitrile–acetone alloy. Journal of Physics Condensed Matter, 2006, 18, 7825-7839.	1.8	12
53	Determination of interfacial energies of solid Sn solution in the In–Bi–Sn ternary alloy. Materials Characterization, 2009, 60, 183-192.	4.4	12
54	The dependence of lamellar spacings and microhardness on the growth rate in the directionally solidified Bi-43 wt.% Sn alloy at a constant temperature gradient. Metals and Materials International, 2009, 15, 741-751	3.4	12

#	Article	IF	CITATIONS
55	Measurement and Prediction of the Thermal and Electrical Conductivity of Al-Zr Overhead Line Conductors at Elevated Temperatures. Materials Research, 2019, 22, .	1.3	12
56	Interfacial Energy of Solid Bismuth in Equilibrium with Bi-In Eutectic Liquid at 109.5 ℃ Equilibrating Temperature. Metals and Materials International, 2008, 14, 177-187.	3.4	11
57	Microstructural, mechanical, electrical and thermal characterization of arc-melted Ni–Si and Co–Si alloys. Journal of Non-Crystalline Solids, 2010, 356, 1735-1741.	3.1	11
58	Dependency of structure, mechanical and electrical properties on rotating magnetic field in the Bi–Sn–Ag ternary eutectic alloy. International Journal of Materials Research, 2016, 107, 362-371.	0.3	11
59	Title is missing!. Journal of Materials Science, 1999, 34, 5533-5541.	3.7	10
60	Experimental determination of solid–solid and solid–liquid interfacial energies of solid ɛ (CuZn5) in the Zn–Cu alloy. Journal of Alloys and Compounds, 2009, 487, 103-108.	5.5	10
61	Determination of interfacial energies for solid al solution in equilibrium with Al-Cu-Ag liquid. Metals and Materials International, 2010, 16, 51-59.	3.4	10
62	Investigation of the microhardness and the electrical resistivity of undercooled Ni–10 at.% Si alloys. Journal of Non-Crystalline Solids, 2011, 357, 809-813.	3.1	10
63	Investigation of the thermoelectrical properties of the Sn91.2â^'x–Zn8.8–Agx alloys. Journal of Thermal Analysis and Calorimetry, 2018, 132, 317-325.	3.6	10
64	Determination of solid–liquid interfacial energies in the In–Bi–Sn ternary alloy. Journal Physics D: Applied Physics, 2008, 41, 175302.	2.8	9
65	Interfacial energies of solid CuAl2 in the CuAl2–Ag2Al pseudo binary alloy. Thin Solid Films, 2010, 518, 4322-4327.	1.8	9
66	Dependence of electrical and thermal conductivity on temperature in directionally solidified Sn–3.5 wt% Ag eutectic alloy. Journal of Materials Science: Materials in Electronics, 2011, 22, 1709-1714.	2.2	9
67	Effect of solidification parameters on the microstructure of directionally solidified Sn-Bi-Zn lead-free solder. Metals and Materials International, 2012, 18, 349-354.	3.4	9
68	Temperature-Dependence of Electrical Resistivity of Cd-Sn, Bi-Sn, and Al-Si Eutectic and Al-3wt.%Si Hypoeutectic Alloys. Journal of Materials Engineering and Performance, 2006, 15, 490-493.	2.5	8
69	Effects of Cooling Rate and Composition on Mechanical Properties of Directionally Solidified Pb100â^'x -Sn x Solders. Journal of Electronic Materials, 2011, 40, 1903-1911.	2.2	8
70	Influence of temperature gradient and growth rate on the mechanical properties of directionally solidified Sn–3.5 wt% Ag eutectic solder. Journal of Materials Science: Materials in Electronics, 2012, 23, 31-40.	2.2	8
71	Influences of Growth Velocity and Fe Content on Microstructure, Microhardness and Tensile Properties of Directionally Solidified Al-1.9Mn-xFe Ternary Alloys. Materials Research, 2017, 20, 801-813.	1.3	8
72	Microstructural evolution and mechanical properties of Sn-Bi-Cu ternary eutectic alloy produced by directional solidification. Materials Research, 2018, 21, .	1.3	8

#	Article	IF	CITATIONS
73	The effect of composition on microhardness and determination of electrical and thermal properties in the Sn-Cu alloys. Journal of Materials Science: Materials in Electronics, 2011, 22, 1378-1386.	2.2	7
74	Effect of growth velocity on microstructure and mechanical properties of directionally solidified 7075 alloy. International Journal of Cast Metals Research, 2020, 33, 11-23.	1.0	7
75	DENDRITIC GROWTH OF THE BINARY SUCCINONITRILE-CAMPHOR SYSTEM. Surface Review and Letters, 2007, 14, 1169-1179.	1.1	6
76	Directionally Solidified Al–Cu–Si–Fe Quaternary Eutectic Alloys. Physics of Metals and Metallography, 2020, 121, 78-83.	1.0	6
77	Effects of growth rate and temperature gradient on the microstructure parameters in the directionally solidified succinonitrile–7.5wt.% carbon tetrabromide alloy. Journal of Materials Processing Technology, 2008, 202, 145-155.	6.3	5
78	INFLUENCE OF GROWTH RATE ON MICROSTRUCTURE AND MICROINDENTATION HARDNESS OF DIRECTIONALLY SOLIDIFIED TIN–CADMIUM EUTECTIC ALLOY. Surface Review and Letters, 2009, 16, 191-201.	1.1	5
79	Investigation of directional solidified Al–Ti alloy. Journal of Non-Crystalline Solids, 2009, 355, 1231-1239.	3.1	5
80	Dependency of the thermal and electrical conductivity on temperatures and compositions of Zn in the Alâ^'Zn alloys. International Journal of Cast Metals Research, 2019, 32, 95-105.	1.0	5
81	Effect of Heat Treatment on the Microstructures and Mechanical Properties of Al–4Cu–1.5Mg Alloy. International Journal of Metalcasting, 2022, 16, 1020-1033.	1.9	5
82	INFLUENCE OF THE SOLIDIFICATION PARAMETERS ON DENDRITIC MICROSTRUCTURES IN UNSTEADY-STATE DIRECTIONALLY SOLIDIFIED OF LEAD–ANTIMONY ALLOY. Surface Review and Letters, 2010, 17, 477-486.	1.1	4
83	Investigation of mechanical, electrical, and thermal properties of a Zn–1.26 wt% Al alloy. Journal of Materials Science, 2011, 46, 1414-1423.	3.7	4
84	Natrolitite, an unusual rock – occurrence and petrographic and geochemical characteristics (eastern) Tj ETQq0	0 0 rgBT /	Oyerlock 10
85	SOLIDIFICATION CHARACTERISTICS AND MICROSTRUCTURAL EVOLUTION OF Zn-1.26 wt.% Al ALLOY. Surface Review and Letters, 2011, 18, 281-288.	1.1	3
86	Thermo-electrical properties in Pb-Sb hypereutectic alloy. Metals and Materials International, 2013, 19, 465-472.	3.4	3
87	Characterization of a Directionally Solidified Sn–Pb–Sb Ternary Eutectic Alloy. Metallography, Microstructure, and Analysis, 2015, 4, 286-297.	1.0	3
88	Microstructural, mechanical, electrical, and thermal properties of the Bi-Sn-Ag ternary eutectic alloy. Journal Wuhan University of Technology, Materials Science Edition, 2017, 32, 147-154.	1.0	3
89	Investigation of the thermo-electrical properties of A707 alloys. Thermochimica Acta, 2019, 673, 177-184.	2.7	3
90	Investigation of the microstructure and physical properties of directionally solidified ternary Al–8.8La–1.2Ni alloy. Journal of Alloys and Compounds, 2021, 855, 157331.	5.5	3

#	Article	IF	CITATIONS
91	Mechanical, electrical, and thermal properties of the directionally solidified Bi-Zn-Al ternary eutectic alloy. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 999-1008.	4.9	2
92	Effect of Growth Velocity and Zn Content on Microhardness in Directionally Solidified Al-Zn Alloys. Materials Research, 2018, 21, .	1.3	1
93	Effect of Temperature Gradient and Growth Velocity on Microstructure and Mechanical Properties on Zn–7Al–3Cu Ternary Eutectic Alloy. International Journal of Metalcasting, 2021, 15, 664-675.	1.9	1
94	Physical Properties of Directionally Solidified Al-1.9Mn-5Fe Alloy. Journal of Materials Engineering and Performance, 2021, 30, 1603-1610.	2.5	1
95	The Effect of Growth Rate on the Microstructure and Mechanical Properties of 7020 Alloys. Journal of Materials Engineering and Performance, 0, , 1.	2.5	1
96	Investigation of the Thermal and Electrical Properties of Al–1.9Mn–xFe Ternary Alloys. Russian Journal of Non-Ferrous Metals, 2021, 62, 320-332.	0.6	0
97	EFFECT OF CU CONTENT AND GROWTH VELOCITY ON THE MICROSTRUCTURE PROPERTIES OF THE DIRECTIONALLY SOLIDIFIED AL-MN-CU TERNARY ALLOYS. EJONS International Journal of Mathematic Engineering and Natural Sciences. 2021, 5, 756-764.	0.0	Ο