Gang-Gang Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264760/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 2017, 46, 481-558.	38.1	1,030
2	Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy and Environmental Science, 2016, 9, 3612-3641.	30.8	530
3	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.	13.7	181
4	Immobilization of Ag(<scp>i</scp>) into a metal–organic framework with –SO ₃ H sites for highly selective olefin–paraffin separation at room temperature. Chemical Communications, 2015, 51, 2859-2862.	4.1	160
5	Confinement Effects in Zeoliteâ€Confined Noble Metals. Angewandte Chemie - International Edition, 2019, 58, 12340-12354.	13.8	143
6	Homojunction of Oxygen and Titanium Vacancies and its Interfacial n–p Effect. Advanced Materials, 2018, 30, e1802173.	21.0	134
7	Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst. Nano Energy, 2017, 40, 88-94.	16.0	128
8	Hierarchical CdS/m-TiO2/G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability. Nano Energy, 2018, 47, 8-17.	16.0	125
9	Construction of Hierarchical Metal–Organic Frameworks by Competitive Coordination Strategy for Highly Efficient CO ₂ Conversion. Advanced Materials, 2019, 31, e1904969.	21.0	111
10	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	3.6	104
11	Control of interpenetration in a microporous metal–organic framework for significantly enhanced C ₂ H ₂ /CO ₂ separation at room temperature. Chemical Communications, 2016, 52, 3494-3496.	4.1	94
12	Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures. RSC Advances, 2014, 4, 20230-20233.	3.6	79
13	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	10.3	78
14	Oneâ€Pot Synthesis of Catalytically Stable and Active Nanoreactors: Encapsulation of Sizeâ€Controlled Nanoparticles within a Hierarchically Macroporous Core@Ordered Mesoporous Shell System. Advanced Materials, 2009, 21, 1368-1372.	21.0	77
15	Spatial Heterojunction in Nanostructured TiO ₂ and Its Cascade Effect for Efficient Photocatalysis. Nano Letters, 2020, 20, 3122-3129.	9.1	74
16	One particle@one cell: Highly monodispersed PtPd bimetallic nanoparticles for enhanced oxygen reduction reaction. Nano Energy, 2014, 8, 214-222.	16.0	66
17	Single cells in nanoshells for the functionalization of living cells. Nanoscale, 2018, 10, 3112-3129.	5.6	66
18	Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 2015, 5, 79355-79360.	3.6	65

GANG-GANG CHANG

#	Article	IF	CITATIONS
19	"Self-repairing―nanoshell for cell protection. Chemical Science, 2015, 6, 486-491.	7.4	57
20	Confinement Effects in Zeoliteâ€Confined Noble Metals. Angewandte Chemie, 2019, 131, 12468-12482.	2.0	57
21	Nitrogen precursor-mediated construction of N-doped hierarchically porous carbon-supported Pd catalysts with controllable morphology and composition. Carbon, 2020, 159, 451-460.	10.3	50
22	Hierarchical MoS ₂ @TiO ₂ Heterojunctions for Enhanced Photocatalytic Performance and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2018, 13, 1609-1615.	3.3	47
23	Hierarchically Fractal PtPdCu Sponges and their Directed Mass- and Electron-Transfer Effects. Nano Letters, 2021, 21, 7870-7878.	9.1	47
24	Highly dispersed PtPd on graphitic nanofibers and its heavy d-Ï€ effect. Applied Catalysis B: Environmental, 2019, 259, 118080.	20.2	46
25	PtPd hollow nanocubes with enhanced alloy effect and active facets for efficient methanol oxidation reaction. Chemical Communications, 2021, 57, 986-989.	4.1	44
26	A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage. Chemical Communications, 2015, 51, 14789-14792.	4.1	40
27	A Fluorinated Metal–Organic Framework for High Methane Storage at Room Temperature. Crystal Growth and Design, 2016, 16, 3395-3399.	3.0	36
28	Bimetallic (Zn/Co) MOFs-Derived Highly Dispersed Metallic Co/HPC for Completely Hydrolytic Dehydrogenation of Ammonia–Borane. Industrial & Engineering Chemistry Research, 2019, 58, 7209-7216.	3.7	35
29	Confinement Effects in Individual Carbon Encapsulated Nonprecious Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2022, 32, .	14.9	35
30	Hydrogen Evolution Enhancement over a Cobalt-Based Schottky Interface. ACS Applied Materials & Interfaces, 2019, 11, 27641-27647.	8.0	34
31	Interfacial co-existence of oxygen and titanium vacancies in nanostructured TiO ₂ for enhancement of carrier transport. Nanoscale, 2020, 12, 8364-8370.	5.6	33
32	High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability. Chemical Communications, 2016, 52, 8219-8222.	4.1	30
33	Confined Ultrafine Pt in Porous Carbon Fibers and Their N-Enhanced Heavy d-Ï€ Effect. Chemistry of Materials, 2022, 34, 3705-3714.	6.7	28
34	Highly Enhanced Gas Uptake and Selectivity via Incorporating Methoxy Groups into a Microporous Metal–Organic Framework. Crystal Growth and Design, 2017, 17, 2172-2177.	3.0	26
35	Spatially Ordered Arrangement of Multifunctional Sites at Molecule Level in a Single Catalyst for Tandem Synthesis of Cyclic Carbonates. Inorganic Chemistry, 2020, 59, 1736-1745.	4.0	26
36	Hierarchically porous graphene for batteries and supercapacitors. New Journal of Chemistry, 2018, 42, 5634-5655.	2.8	24

GANG-GANG CHANG

#	Article	IF	CITATIONS
37	Hierarchically Dualâ€Mesoporous TiO ₂ Microspheres for Enhanced Photocatalytic Properties and Lithium Storage. Chemistry - A European Journal, 2018, 24, 13246-13252.	3.3	24
38	Spatial acid–base–Pd triple-sites of a hierarchical core–shell structure for three-step tandem reaction. Chemical Communications, 2020, 56, 6297-6300.	4.1	24
39	Template-free synthesis to micro-meso-macroporous hierarchy in nanostructured MIL-101(Cr) with enhanced catalytic activity. Science China Materials, 2021, 64, 252-258.	6.3	23
40	Synergistic catalysis of Pd nanoparticles with both Lewis and Bronsted acid sites encapsulated within a sulfonated metal–organic frameworks toward one-pot tandem reactions. Journal of Colloid and Interface Science, 2019, 557, 207-215.	9.4	22
41	Ultralong PtPd Alloyed Nanowires Anchored on Graphene for Efficient Methanol Oxidation Reaction. Chemistry - an Asian Journal, 2021, 16, 1130-1137.	3.3	21
42	A Threeâ€Ðimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	2.0	20
43	Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions. Beilstein Journal of Nanotechnology, 2020, 11, 770-781.	2.8	20
44	Highly efficient and selective removal of N-heterocyclic aromatic contaminants from liquid fuels in a Ag(I) functionalized metal-organic framework: Contribution of multiple interaction sites. Journal of Colloid and Interface Science, 2018, 518, 149-155.	9.4	19
45	Tuning the Intrinsic Activity and Electrochemical Surface Area of MoS ₂ via Tiny Zn Doping: Toward an Efficient Hydrogen Evolution Reaction (HER) Catalyst. Chemistry - A European Journal, 2021, 27, 15992-15999.	3.3	19
46	Highly Efficient Heterogeneous Catalytic Reduction of Fe(II)EDTA-NO in Industrial Denitrification Solution over Pd/AC Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 22875-22883.	3.7	18
47	All-around coating of CoNi nanoalloy using a hierarchically porous carbon derived from bimetallic MOFs for highly efficient hydrolytic dehydrogenation of ammonia-borane. New Journal of Chemistry, 2020, 44, 3021-3027.	2.8	18
48	Highly Dispersed Pt Nanoparticles Embedded in Nâ€Đoped Porous Carbon for Efficient Hydrogen Evolution. Chemistry - an Asian Journal, 2021, 16, 1878-1881.	3.3	18
49	A hierarchically multifunctional integrated catalyst with intimate and synergistic active sites for one-pot tandem catalysis. Inorganic Chemistry Frontiers, 2021, 8, 3463-3472.	6.0	18
50	Integrated-Trifunctional Single Catalyst with Fine Spatial Distribution via Stepwise Anchored Strategy for Multistep Autotandem Catalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 966-976.	6.7	16
51	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14202-14208.	3.3	16
52	Shapeâ€Controlled Surfaceâ€Coating to Pd@Mesoporous Silica Core–Shell Nanocatalysts with High Catalytic Activity and Stability. Chemistry - an Asian Journal, 2018, 13, 31-34.	3.3	15
53	One-pot synthesis of hierarchical CdS/MoS2/rGO with enhanced (photo)electrocatalytic activities. Chemical Physics Letters, 2020, 759, 138047.	2.6	15
54	Cobaltâ€Based MOFâ€Derived CoP/Hierarchical Porous Carbon (HPC) Composites as Robust Catalyst for Efficient Dehydrogenation of Ammoniaâ€Borane. ChemistrySelect, 2020, 5, 2190-2196.	1.5	15

GANG-GANG CHANG

#	Article	IF	CITATIONS
55	Nanocell hybrids for green chemistry. Trends in Biotechnology, 2022, 40, 974-986.	9.3	15
56	Control of the Interfacial Wettability to Synthesize Highly Dispersed PtPd Nanocrystals for Efficient Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2018, 13, 1119-1123.	3.3	14
57	Synthesis of hydrophobic and hydrophilic TiO ₂ nanofluids for transformable surface wettability and photoactive coating. Chemical Communications, 2019, 55, 9275-9278.	4.1	14
58	Construction of a functionalized hierarchical pore metal–organic framework <i>via</i> a palladium-reduction induced strategy. Nanoscale, 2020, 12, 6250-6255.	5.6	13
59	Salt-enhanced removal of 2-ethyl-1-hexanol from aqueous solutions by adsorption on activated carbon. Journal of Colloid and Interface Science, 2013, 412, 7-12.	9.4	12
60	bFGF and Polyâ€RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and Differentiation. Advanced Materials Interfaces, 2018, 5, 1700702.	3.7	12
61	Confined Thermolysis for Oriented Nâ€Đoped Carbon Supported Pd toward Stable Catalytic and Energy Storage Applications. Small, 2021, 17, e2002811.	10.0	12
62	Solvent-Mediated Synthesis of Hierarchical MOFs and Derived Urchin-Like Pd@SC/HfO ₂ with High Catalytic Activity and Stability. ACS Applied Materials & Interfaces, 2022, 14, 5887-5896.	8.0	12
63	Synergistic Capture and Conversion of Soluble Polysulfides in Li–S Batteries with Composite Freestanding Carbonaceous Interlayers. ACS Applied Materials & Interfaces, 2022, 14, 9231-9241.	8.0	11
64	Silica coating with well-defined micro-nano hierarchy for universal and stable surface superhydrophobicity. Chemical Physics Letters, 2019, 730, 594-599.	2.6	10
65	Adsorption of 2-Butyl-2-ethyl-1,3-propanediol from Aqueous Solutions on Activated Carbon: Salt-Out Effect on Equilibrium, Kinetics, and Dynamics. Industrial & Engineering Chemistry Research, 2014, 53, 8592-8598.	3.7	9
66	Design and synthesis of TiO2/C nanosheets with a directional cascade carriers transfer. Chemical Science, 0, , .	7.4	9
67	Graphene Oxide Coating Enhances Adsorption of Lead Ions on Mesoporous SiO ₂ Spheres. Chemistry Letters, 2018, 47, 210-212.	1.3	7
68	Multifunctional Pd/MOFs@MOFs Confined Coreâ€ S hell Catalysts with Wrinkled Surface for Selective Catalysis. Chemistry - an Asian Journal, 2021, 16, 3743-3747.	3.3	6
69	Hollow MOF capsule encapsulated amino-functionalized ionic liquid for excellent CO2 catalytic conversion. Chinese Journal of Chemical Engineering, 2021, 40, 124-130.	3.5	6
70	Hydrophilic Pd/MgO Nanosystem for the Highly Efficient Aqueous-Phase Catalysis of Suzuki–Miyaura Reactions. Industrial & Engineering Chemistry Research, 2020, 59, 81-87.	3.7	5
71	Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58, 6882-6885.	4.1	5
72	A Zeoliteâ€confined Pd/Acid Sites for High Efficiency of Bâ^'H Cleavage. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1603-1606.	1.2	3

#	Article	IF	CITATIONS
73	A facile synthesis of hierarchically porous graphene for high-performance lithium storage. New Journal of Chemistry, 2022, 46, 9999-10003.	2.8	3
74	Synthesis and Kinetics of the <i>N</i> -(2-Methyl-6-ethyl phenyl)-1-methoxypropyl-2-imine Schiff Base Catalyzed by NKC-9 Cation Exchange Resin. ACS Omega, 2019, 4, 14750-14758.	3.5	2
75	Hierarchically porous single catalyst Ru/HPW/UiO-66 with synergistic acid/metal sites for one-pot catalytic synthesis of γ-valerolactone. New Journal of Chemistry, 2022, 46, 13047-13053.	2.8	2
76	Titanium Vacancies in TiO ₂ Nanofibers Enable Highly Efficient Photodriven Seawater Splitting. Chemistry - A European Journal, 2021, 27, 14142-14142.	3.3	1
77	Kinetics and catalytic distillation simulation for the heterogeneously catalytic synthesis of imine. Canadian Journal of Chemical Engineering, 2022, 100, 1558-1568.	1.7	0