
Sixto Malato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264654/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 2009, 147, 1-59.	2.2	2,574
2	Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 2011, 409, 4141-4166.	3.9	1,946
3	Advanced oxidation processes for water treatment: advances and trends for R&D. Journal of Chemical Technology and Biotechnology, 2008, 83, 769-776.	1.6	755
4	Photocatalysis with solar energy at a pilot-plant scale: an overview. Applied Catalysis B: Environmental, 2002, 37, 1-15.	10.8	648
5	Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental, 2015, 170-171, 90-123.	10.8	541
6	Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment, 2019, 655, 986-1008.	3.9	515
7	Photo-Fenton Degradation of Diclofenac:Â Identification of Main Intermediates and Degradation Pathway. Environmental Science & Technology, 2005, 39, 8300-8306.	4.6	349
8	Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research, 2009, 43, 3922-3931.	5.3	308
9	Photocatalytic treatment of water-soluble pesticides by photo-Fenton and TiO2 using solar energy. Catalysis Today, 2002, 76, 209-220.	2.2	293
10	Degradation of fifteen emerging contaminants at μgLâ~'1 initial concentrations by mild solar photo-Fenton in MWTP effluents. Water Research, 2010, 44, 545-554.	5.3	293
11	Degradation of the antibiotic amoxicillin by photo-Fenton process – Chemical and toxicological assessment. Water Research, 2011, 45, 1394-1402.	5.3	289
12	Degradation and inactivation of tetracycline by TiO2 photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184, 141-146.	2.0	285
13	The photo-fenton reaction and the TiO2/UV process for waste water treatment â^' novel developments. Catalysis Today, 1999, 53, 131-144.	2.2	280
14	Solar photocatalytic treatment of synthetic municipal wastewater. Water Research, 2004, 38, 1147-1154.	5.3	271
15	Photocatalytic degradation of emerging contaminants in municipal wastewater treatment plant effluents using immobilized TiO2 in a solar pilot plant. Applied Catalysis B: Environmental, 2011, 103, 294-301.	10.8	268
16	Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents. Water Research, 2013, 47, 1521-1528.	5.3	254
17	Photocatalytic decontamination and disinfection of water with solar collectors. Catalysis Today, 2007, 122, 137-149.	2.2	252
18	Solar photocatalysis: a clean process for water detoxification. Science of the Total Environment, 2002, 291, 85-97.	3.9	251

#	Article	IF	CITATIONS
19	Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment. Water Research, 2009, 43, 661-668.	5.3	243
20	Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar photo-Fenton processes. Journal of Hazardous Materials, 2015, 286, 261-268.	6.5	239
21	Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: A comparison. Water Research, 2013, 47, 833-840.	5.3	238
22	Applied studies in solar photocatalytic detoxification: an overview. Solar Energy, 2003, 75, 329-336.	2.9	233
23	Engineering of solar photocatalytic collectors. Solar Energy, 2004, 77, 513-524.	2.9	220
24	Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Research, 2003, 37, 3180-3188.	5.3	217
25	Azo-dyes photocatalytic degradation in aqueous suspension of TiO2 under solar irradiation. Chemosphere, 2002, 49, 1223-1230.	4.2	215
26	Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 2003, 50, 71-78.	4.2	204
27	Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. Journal of Hazardous Materials, 2012, 211-212, 131-137.	6.5	199
28	Enhancement of the rate of solar photocatalytic mineralization of organic pollutants by inorganic oxidizing species. Applied Catalysis B: Environmental, 1998, 17, 347-356.	10.8	198
29	TiO2-based solar photocatalytic detoxification of water containing organic pollutants. Case studies of 2,4-dichlorophenoxyaceticacid (2,4-D) and of benzofuran. Applied Catalysis B: Environmental, 1998, 17, 15-23.	10.8	195
30	Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. Journal of Mass Spectrometry, 2005, 40, 908-915.	0.7	186
31	Degradation of Imidacloprid in Water by Photo-Fenton and TiO2Photocatalysis at a Solar Pilot Plant:Â A Comparative Study. Environmental Science & Technology, 2001, 35, 4359-4366.	4.6	184
32	Solar Photocatalytic Detoxification and Disinfection of Water: Recent Overview. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 4-15.	1.1	183
33	Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension. Catalysis Today, 1999, 54, 255-265.	2.2	177
34	Review of feasible solar energy applications to water processes. Renewable and Sustainable Energy Reviews, 2009, 13, 1437-1445.	8.2	177
35	Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications. Applied Catalysis B: Environmental, 2003, 46, 319-332.	10.8	174
36	Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Research, 2010, 44, 2735-2744.	5.3	171

#	Article	IF	CITATIONS
37	Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. Journal of Hazardous Materials, 2006, 138, 507-517.	6.5	170
38	Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Science of the Total Environment, 2020, 710, 136312.	3.9	167
39	Water disinfection by solar photocatalysis using compound parabolic collectors. Catalysis Today, 2005, 101, 345-352.	2.2	166
40	Application of Photo-Fenton as a Tertiary Treatment of Emerging Contaminants in Municipal Wastewater Environmental Science & Technology, 2010, 44, 1792-1798.	4.6	166
41	Applicability of the Photo-Fenton method for treating water containing pesticides. Catalysis Today, 1999, 54, 309-319.	2.2	159
42	Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Solar Energy, 2004, 77, 567-572.	2.9	158
43	Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere, 2005, 58, 1127-1133.	4.2	155
44	Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the Plataforma Solar de Almeria. Materials Science in Semiconductor Processing, 2016, 42, 15-23.	1.9	152
45	Treatment of Municipal Wastewater Treatment Plant Effluents with Modified Photo-Fenton As a Tertiary Treatment for the Degradation of Micro Pollutants and Disinfection. Environmental Science & Technology, 2012, 46, 2885-2892.	4.6	146
46	Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale: Kinetics and characterization of major intermediate products. Applied Catalysis B: Environmental, 2009, 89, 255-264.	10.8	145
47	Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chemical Engineering Journal, 2015, 261, 36-44.	6.6	145
48	Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B: Environmental, 2012, 125, 51-58.	10.8	141
49	Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Applied Catalysis B: Environmental, 2000, 27, 153-168.	10.8	140
50	Photocatalytic Treatment of Diuron by Solar Photocatalysis:Â Evaluation of Main Intermediates and Toxicity. Environmental Science & Technology, 2003, 37, 2516-2524.	4.6	140
51	Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catalysis Today, 2005, 101, 219-226.	2.2	138
52	Degradation study of 15 emerging contaminants at low concentration by immobilized TiO2 in a pilot plant. Catalysis Today, 2010, 151, 107-113.	2.2	138
53	Comparison of various titania samples of industrial origin in the solar photocatalytic detoxification of water containing 4-chlorophenol. Catalysis Today, 1999, 54, 217-228.	2.2	137
54	Toxicity assays: a way for evaluating AOPs efficiency. Water Research, 2002, 36, 4255-4262.	5.3	136

#	Article	IF	CITATIONS
55	Solar photocatalytic degradation and detoxification of EU priority substances. Catalysis Today, 2005, 101, 203-210.	2.2	135
56	Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Research, 2009, 43, 653-660.	5.3	133
57	Partial degradation of five pesticides and an industrial pollutant by ozonation in a pilot-plant scale reactor. Journal of Hazardous Materials, 2006, 138, 363-369.	6.5	132
58	Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Research, 2014, 64, 23-31.	5.3	131
59	Degradation of pesticides in water using solar advanced oxidation processes. Applied Catalysis B: Environmental, 2006, 64, 272-281.	10.8	130
60	Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere, 1993, 26, 2103-2119.	4.2	128
61	SOLAR PHOTOCATALYTIC DEGRADATION OF WATER AND AIR POLLUTANTS: CHALLENGES AND PERSPECTIVES. Solar Energy, 1999, 66, 169-182.	2.9	128
62	Solar photo-Fenton treatment—Process parameters and process control. Applied Catalysis B: Environmental, 2006, 64, 121-130.	10.8	128
63	Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catalysis Today, 2009, 144, 124-130.	2.2	126
64	Compound parabolic concentrator technology development to commercial solar detoxification applications. Solar Energy, 1999, 67, 317-330.	2.9	122
65	New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of isoproturon. Applied Catalysis B: Environmental, 2002, 36, 131-144.	10.8	120
66	Enhancing biodegradability of priority substances (pesticides) by solar photo-Fenton. Water Research, 2006, 40, 1086-1094.	5.3	120
67	New industrial titania photocatalysts for the solar detoxification of water containing various pollutants. Applied Catalysis B: Environmental, 2002, 35, 281-294.	10.8	115
68	Photocatalytic degradation of industrial residual waters. Solar Energy, 1996, 56, 401-410.	2.9	114
69	Photodegradation of malachite green under natural sunlight irradiation: Kinetic and toxicity of the transformation products. Chemosphere, 2008, 70, 2068-2075.	4.2	113
70	Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. Applied Catalysis B: Environmental, 2000, 28, 163-174.	10.8	112
71	Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Solar Energy, 2005, 79, 402-408.	2.9	111
72	Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water. Catalysis Today, 2014, 230, 27-34.	2.2	111

#	Article	IF	CITATIONS
73	Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: Minimization of operating costs and effluent toxicity. Chemical Engineering Journal, 2011, 172, 250-257.	6.6	110
74	Effect of operating parameters on the testing of new industrial titania catalysts at solar pilot plant scale. Applied Catalysis B: Environmental, 2003, 42, 349-357.	10.8	107
75	Solar photo-Fenton treatment of pesticides in water: Effect of iron concentration on degradation and assessment of ecotoxicity and biodegradability. Applied Catalysis B: Environmental, 2009, 88, 448-454.	10.8	107
76	Effects of experimental conditions on E. coli survival during solar photocatalytic water disinfection. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 239-246.	2.0	105
77	Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system. Catalysis Today, 2007, 129, 69-78.	2.2	101
78	Fast determination of pesticides and other contaminants of emerging concern in treated wastewater using direct injection coupled to highly sensitive ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2017, 1507, 84-94.	1.8	100
79	Large solar plant photocatalytic water decontamination: Effect of operational parameters. Solar Energy, 1996, 56, 421-428.	2.9	98
80	Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 31-40.	2.0	98
81	Oxidation mechanisms of amoxicillin and paracetamol in the photo-Fenton solar process. Water Research, 2019, 156, 232-240.	5.3	96
82	Large solar plant photocatalytic water decontamination: Degradation of atrazine. Solar Energy, 1996, 56, 411-419.	2.9	95
83	Life cycle assessment of a coupled solar photocatalytic–biological process for wastewater treatment. Water Research, 2006, 40, 3533-3540.	5.3	91
84	Photocatalytic degradation of EU priority substances: A comparison between TiO2 and Fenton plus photo-Fenton in a solar pilot plant. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 354-363.	2.0	90
85	Evaluation of operational parameters involved in solar photo-Fenton degradation of a commercial pesticide mixture. Catalysis Today, 2009, 144, 94-99.	2.2	90
86	Low-concentrating CPC collectors for photocatalytic water detoxification: comparison with a medium concentrating solar collector. Water Science and Technology, 1997, 35, 157-164.	1.2	88
87	Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions. Chemosphere, 2002, 49, 525-532.	4.2	86
88	Economic evaluation of a combined photo-Fenton/MBR process using pesticides as model pollutant. Factors affecting costs. Journal of Hazardous Materials, 2013, 244-245, 195-203.	6.5	85
89	Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Applied Catalysis B: Environmental, 2004, 53, 127-137.	10.8	84
90	Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe(III)–EDDS complex and ozonation). Separation and Purification Technology, 2014, 122, 515-522.	3.9	84

#	Article	IF	CITATIONS
91	Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species. Water Research, 2012, 46, 5374-5380.	5.3	83
92	Solar photocatalytic treatment of trimethoprim in four environmental matrices at a pilot scale: Transformation products and ecotoxicity evaluation. Science of the Total Environment, 2012, 430, 167-173.	3.9	83
93	Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Applied Catalysis B: Environmental, 2019, 242, 327-336.	10.8	83
94	Solar photodegradation of pesticides in water by sodium decatungstate. Catalysis Today, 1999, 54, 297-307.	2.2	82
95	Optimization of pre-industrial solar photocatalytic mineralization of commercial pesticides. Applied Catalysis B: Environmental, 2000, 25, 31-38.	10.8	81
96	A novel TiO2-assisted solar photocatalytic batch-process disinfection reactor for the treatment of biological and chemical contaminants in domestic drinking water in developing countries. Solar Energy, 2004, 77, 649-655.	2.9	80
97	Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. Journal of Hazardous Materials, 2017, 323, 442-451.	6.5	79
98	Optimizing the solar photo-Fenton process in the treatment of contaminated water. Determination of intrinsic kinetic constants for scale-up. Solar Energy, 2005, 79, 360-368.	2.9	78
99	Decontamination of industrial wastewater containing pesticides by combining large-scale homogeneous solar photocatalysis and biological treatment. Chemical Engineering Journal, 2010, 160, 447-456.	6.6	77
100	Reduction of clarithromycin and sulfamethoxazole-resistant Enterococcus by pilot-scale solar-driven Fenton oxidation. Science of the Total Environment, 2014, 468-469, 19-27.	3.9	77
101	Assessment of solar raceway pond reactors for removal of contaminants of emerging concern by photo-Fenton at circumneutral pH from very different municipal wastewater effluents. Chemical Engineering Journal, 2019, 366, 141-149.	6.6	77
102	Strategies for reducing cost by using solar photo-Fenton treatment combined with nanofiltration to remove microcontaminants in real municipal effluents: Toxicity and economic assessment. Chemical Engineering Journal, 2017, 318, 161-170.	6.6	75
103	Light-induced catalytic transformation of ofloxacin by solar Fenton in various water matrices at a pilot plant: Mineralization and characterization of major intermediate products. Science of the Total Environment, 2013, 461-462, 39-48.	3.9	74
104	Degradation of alachlor and pyrimethanil by combined photo-Fenton and biological oxidation. Journal of Hazardous Materials, 2008, 155, 342-349.	6.5	73
105	Solar photocatalytic treatment of simulated dyestuff effluents. Solar Energy, 2004, 77, 591-600.	2.9	72
106	Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Applied Catalysis B: Environmental, 2010, 95, 228-237.	10.8	72
107	Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catalysis Today, 2011, 161, 241-246.	2.2	72
108	New approach to solar photo-Fenton operation. Raceway ponds as tertiary treatment technology. Journal of Hazardous Materials, 2014, 279, 322-329.	6.5	71

#	Article	IF	CITATIONS
109	Relationship between TiO2 particle size and reactor diameter in solar photoreactors efficiency. Catalysis Today, 1999, 54, 195-204.	2.2	70
110	Supported Fe/C and Fe/Nafion/C catalysts for the photo-Fenton degradation of Orange II under solar irradiation. Catalysis Today, 2005, 101, 375-382.	2.2	70
111	Development of TiO2-C photocatalysts for solar treatment of polluted water. Carbon, 2017, 122, 361-373.	5.4	68
112	Low-concentrating CPC collectors for photocatalytic water detoxification: Comparison with a medium concentrating solar collector. Water Science and Technology, 1997, 35, 157.	1.2	67
113	Photoelectrochemical reactors for the solar decontamination of water. Catalysis Today, 1999, 54, 329-339.	2.2	67
114	Degradation of dipyrone and its main intermediates by solar AOPs. Catalysis Today, 2007, 129, 207-214.	2.2	67
115	A combined solar photocatalytic-biological field system for the mineralization of an industrial pollutant at pilot scale. Catalysis Today, 2007, 122, 150-159.	2.2	67
116	TiO2/Cu(II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor. Applied Catalysis B: Environmental, 2013, 136-137, 56-63.	10.8	67
117	Landfill leachate treatment: Comparison of standalone electrochemical degradation and combined with a novel biofilter. Chemical Engineering Journal, 2016, 288, 87-98.	6.6	67
118	Comparison of UV/H 2 O 2 , UV/S 2 O 8 2â^' , solar/Fe(II)/H 2 O 2 and solar/Fe(II)/S 2 O 8 2â^' at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chemical Engineering Journal, 2017, 310, 514-524.	6.6	67
119	Solar Photo-Fenton as Finishing Step for Biological Treatment of a Pharmaceutical Wastewater. Environmental Science & Technology, 2009, 43, 1185-1191.	4.6	66
120	Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: Interdependence of initial pollutant concentration, temperature and iron concentration. Applied Catalysis B: Environmental, 2010, 97, 292-298.	10.8	65
121	Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. Journal of Chemical Technology and Biotechnology, 2016, 91, 72-81.	1.6	64
122	Tertiary treatment of pulp mill wastewater by solar photo-Fenton. Journal of Hazardous Materials, 2012, 225-226, 173-181.	6.5	63
123	Advanced Oxidation Processes at Laboratory Scale: Environmental and Economic Impacts. ACS Sustainable Chemistry and Engineering, 2015, 3, 3188-3196.	3.2	63
124	Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy, 2004, 77, 625-633.	2.9	62
125	Application of high intensity UVC-LED for the removal of acetamiprid with the photo-Fenton process. Chemical Engineering Journal, 2015, 264, 690-696.	6.6	62
126	Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photo catalyst. International Journal of Hydrogen Energy, 2016, 41, 11933-11940.	3.8	62

#	Article	IF	CITATIONS
127	Solar pilot plant scale hydrogen generation by irradiation of Cu/TiO2 composites in presence of sacrificial electron donors. Applied Catalysis B: Environmental, 2018, 229, 15-23.	10.8	62
128	Combined nanofiltration and photo-Fenton treatment of water containing micropollutants. Chemical Engineering Journal, 2013, 224, 89-95.	6.6	61
129	Heterogeneous photocatalytic hydrogen generation in a solar pilot plant. International Journal of Hydrogen Energy, 2013, 38, 12718-12724.	3.8	61
130	Photocatalytic degradation of phenol: Comparison between pilot-plant-scale and laboratory results. Solar Energy, 1996, 56, 387-400.	2.9	60
131	Solar photocatalytic mineralization of commercial pesticides: acrinathrin. Chemosphere, 2000, 40, 403-409.	4.2	60
132	Solar disinfection of contaminated water: a comparison of three small-scale reactors. Solar Energy, 2004, 77, 657-664.	2.9	59
133	Abatement of ibuprofen by solar photocatalysis process: Enhancement and scale up. Catalysis Today, 2009, 144, 112-116.	2.2	59
134	Study of application of titania catalysts on solar photocatalysis: Influence of type of pollutants and water matrices. Chemical Engineering Journal, 2016, 291, 64-73.	6.6	59
135	Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. Journal of Hazardous Materials, 2016, 320, 469-478.	6.5	58
136	EDDS as complexing agent for enhancing solar advanced oxidation processes in natural water: Effect of iron species and different oxidants. Journal of Hazardous Materials, 2019, 372, 129-136.	6.5	58
137	Concentrating versus non-concentrating reactors for solar photocatalytic degradation of p-nitrotoluene-o-sulfonic acid. Water Science and Technology, 2001, 44, 219-227.	1.2	57
138	Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catalysis Today, 2010, 151, 100-106.	2.2	57
139	Evaluation of photocatalytic degradation of imidacloprid in industrial water by GC-MS and LC-MS. Analusis - European Journal of Analytical Chemistry, 1998, 26, 245-250.	0.4	56
140	Solar photocatalytic mineralization of commercial pesticides: Oxamyl. Solar Energy Materials and Solar Cells, 2000, 64, 1-14.	3.0	56
141	Solar photo-Fenton at mild conditions to treat a mixture of six emerging pollutants. Chemical Engineering Journal, 2012, 198-199, 65-72.	6.6	56
142	Modelling of the operation of raceway pond reactors for micropollutant removal by solar photo-Fenton as a function of photon absorption. Applied Catalysis B: Environmental, 2015, 178, 210-217.	10.8	56
143	Solar photocatalytic degradation of pesticides over TiO2-rGO nanocomposites at pilot plant scale. Science of the Total Environment, 2020, 737, 140286.	3.9	56
144	Solar Photochemical Treatment of Winery Wastewater in a CPC Reactor. Journal of Agricultural and Food Chemistry, 2009, 57, 11242-11248.	2.4	55

#	Article	IF	CITATIONS
145	Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chemical Engineering Journal, 2015, 273, 205-213.	6.6	55
146	Degradation and monitoring of acetamiprid, thiabendazole and their transformation products in an agro-food industry effluent during solar photo-Fenton treatment in a raceway pond reactor. Chemosphere, 2015, 130, 73-81.	4.2	55
147	Mechanistic modeling of solar photo-Fenton process with Fe3+-EDDS at neutral pH. Applied Catalysis B: Environmental, 2018, 233, 234-242.	10.8	55
148	Titanium Dioxide/Electrolyte Solution Interface: Electron Transfer Phenomena. Journal of Colloid and Interface Science, 2000, 227, 510-516.	5.0	54
149	Photocatalytic Pilot Scale Degradation Study of Pyrimethanil and of Its Main Degradation Products in Waters by Means of Solid-Phase Extraction Followed by Gas and Liquid Chromatography with Mass Spectrometry Detection. Environmental Science & Technology, 2000, 34, 1563-1571.	4.6	54
150	Dissolved oxygen concentration: A key parameter in monitoring the photo-Fenton process. Applied Catalysis B: Environmental, 2011, 104, 316-323.	10.8	53
151	On ozone-photocatalysis synergism in black-light induced reactions: Oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis. Chemical Engineering Journal, 2012, 204-206, 131-140.	6.6	52
152	Solar photocatalytic mineralization of commercial pesticides: Methamidophos. Chemosphere, 1999, 38, 1145-1156.	4.2	51
153	A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses. Water Research, 2009, 43, 784-792.	5.3	51
154	Coupling solar photo-Fenton and biotreatment at industrial scale: Main results of a demonstration plant. Journal of Hazardous Materials, 2007, 146, 440-446.	6.5	50
155	Effect of pesticide concentration on the degradation process by combined solar photo-Fenton and biological treatment. Water Research, 2009, 43, 3838-3848.	5.3	50
156	New large solar photocatalytic plant: set-up and preliminary results. Chemosphere, 2002, 47, 235-240.	4.2	49
157	Solar treatment of cork boiling and bleaching wastewaters in a pilot plant. Water Research, 2009, 43, 4050-4062.	5.3	49
158	Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Research, 2010, 44, 3029-3038.	5.3	49
159	Microcontaminant removal in secondary effluents by solar photo-Fenton at circumneutral pH in raceway pond reactors. Catalysis Today, 2017, 287, 10-14.	2.2	49
160	Environmental assessment of solar photo-Fenton processes in combination with nanofiltration for the removal of micro-contaminants from real wastewaters. Science of the Total Environment, 2019, 650, 2210-2220.	3.9	49
161	New trend on open solar photoreactors to treat micropollutants by photo-Fenton at circumneutral pH: Increasing optical pathway. Chemical Engineering Journal, 2020, 385, 123982.	6.6	49
162	Treatment of chlorinated solvents by TiO2 photocatalysis and photo-Fenton: influence of operating conditions in a solar pilot plant. Chemosphere, 2005, 58, 391-398.	4.2	48

#	Article	IF	CITATIONS
163	Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. Journal of Hazardous Materials, 2019, 372, 85-93.	6.5	48
164	Cork boiling wastewater treatment at pilot plant scale: Comparison of solar photo-Fenton and ozone (O3, O3/H2O2). Toxicity and biodegradability assessment. Chemical Engineering Journal, 2013, 234, 232-239.	6.6	47
165	Removal of pharmaceuticals at microg Lâ~'1 by combined nanofiltration and mild solar photo-Fenton. Chemical Engineering Journal, 2014, 239, 68-74.	6.6	47
166	Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural in aqueous suspension of polymeric carbon nitride and its adduct with H2O2 in a solar pilot plant. Catalysis Today, 2018, 315, 138-148.	2.2	47
167	First experimental results of a new hybrid solar/gas multi-effect distillation system: the AQUASOL project. Desalination, 2008, 220, 619-625.	4.0	46
168	Degradation Pathways of the Commercial Reactive Azo Dye Procion Red H-E7B under Solar-Assisted Photo-Fenton Reaction. Environmental Science & Technology, 2008, 42, 6663-6670.	4.6	46
169	Benefits and limitations of using Fe(III)-EDDS for the treatment of highly contaminated water at near-neutral pH. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 1-7.	2.0	46
170	Advanced treatment of urban wastewater by UV-C/free chlorine process: Micro-pollutants removal and effect of UV-C radiation on trihalomethanes formation. Water Research, 2020, 169, 115220.	5.3	46
171	Solar driven degradation of 4-chlorophenol. Catalysis Today, 1999, 54, 321-327.	2.2	45
172	Life-Cycle Assessment of a Coupled Advanced Oxidation-Biological Process for Wastewater Treatment: Comparison with Granular Activated Carbon Adsorption. Environmental Engineering Science, 2007, 24, 638-651.	0.8	45
173	Solar photo-Fenton degradation of nalidixic acid in waters and wastewaters of different composition. Analytical assessment by LC–TOF-MS. Water Research, 2011, 45, 1736-1744.	5.3	45
174	Assessment of solar photocatalysis using Ag/BiVO 4 at pilot solar Compound Parabolic Collector for inactivation of pathogens in well water and secondary effluents. Catalysis Today, 2017, 281, 124-134.	2.2	44
175	Evaluating Microtox© as a tool for biodegradability assessment of partially treated solutions of pesticides using Fe3+ and TiO2 solar photo-assisted processes. Ecotoxicology and Environmental Safety, 2008, 69, 546-555.	2.9	43
176	Enhancement of the Fenton and photo-Fenton processes by components found in wastewater from the industrial processing of natural products: The possibilities of cork boiling wastewater reuse. Chemical Engineering Journal, 2016, 304, 890-896.	6.6	43
177	Effect of volumetric rate of photon absorption on the kinetics of micropollutant removal by solar photo-Fenton with Fe3+-EDDS at neutral pH. Chemical Engineering Journal, 2018, 331, 84-92.	6.6	43
178	Contaminants of emerging concern removal from real wastewater by UV/free chlorine process: A comparison with solar/free chlorine and UV/H2O2 at pilot scale. Chemosphere, 2019, 236, 124354.	4.2	43
179	A comparative study of different tests for biodegradability enhancement determination during AOP treatment of recalcitrant toxic aqueous solutions. Ecotoxicology and Environmental Safety, 2010, 73, 1189-1195.	2.9	42
180	Characterization of intermediate products of solar photocatalytic degradation of ranitidine at pilot-scale. Chemosphere, 2010, 79, 368-376.	4.2	42

#	Article	IF	CITATIONS
181	Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catalysis Today, 2013, 209, 188-194.	2.2	42
182	Microcontaminant removal by solar photo-Fenton at natural pH run with sequential and continuous iron additions. Chemical Engineering Journal, 2014, 235, 132-140.	6.6	41
183	Microcontaminant degradation in municipal wastewater treatment plant secondary effluent by EDDS assisted photo-Fenton at near-neutral pH: An experimental design approach. Catalysis Today, 2015, 252, 61-69.	2.2	41
184	Combined photo-Fenton and biological oxidation for pesticide degradation: Effect of photo-treated intermediates on biodegradation kinetics. Chemosphere, 2008, 70, 1476-1483.	4.2	40
185	Iron dosage as a strategy to operate the photo-Fenton process at initial neutral pH. Chemical Engineering Journal, 2013, 224, 67-74.	6.6	40
186	Is the combination of nanofiltration membranes and AOPs for removing microcontaminants cost effective in real municipal wastewater effluents?. Environmental Science: Water Research and Technology, 2016, 2, 511-520.	1.2	40
187	Photocatalysis and radiation absorption in a solar plant. Solar Energy Materials and Solar Cells, 1996, 44, 199-217.	3.0	39
188	Solar transformation and photocatalytic treatment of cocaine in water: Kinetics, characterization of major intermediate products and toxicity evaluation. Applied Catalysis B: Environmental, 2011, 104, 37-48.	10.8	39
189	Detailed treatment line for a specific landfill leachate remediation. Brief economic assessment. Chemical Engineering Journal, 2015, 261, 60-66.	6.6	39
190	Photo-Fenton applied to the removal of pharmaceutical and other pollutants of emerging concern. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100458.	3.2	39
191	Pre-industrial-scale Combined Solar Photo-Fenton and Immobilized Biomass Activated-Sludge Biotreatment. Industrial & Engineering Chemistry Research, 2007, 46, 7467-7475.	1.8	38
192	Coupled solar photo-Fenton and biological treatment for the degradation of diuron and linuron herbicides at pilot scale. Chemosphere, 2008, 72, 622-629.	4.2	38
193	Photo-Fenton decomposition of chlorfenvinphos: Determination of reaction pathway. Water Research, 2009, 43, 441-449.	5.3	38
194	Solar photo-Fenton degradation of herbicides partially dissolved in water. Catalysis Today, 2011, 161, 214-220.	2.2	38
195	Phenomenological study and application of the combined influence of iron concentration and irradiance on the photo-Fenton process to remove micropollutants. Science of the Total Environment, 2014, 478, 123-132.	3.9	38
196	Determination of pesticides in sewage sludge from an agro-food industry using QuEChERS extraction followed by analysis with liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2017, 409, 6181-6193.	1.9	37
197	Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: A pilot plant study. Catalysis Today, 2019, 328, 216-222.	2.2	37
198	Hydrogen peroxide automatic dosing based on dissolved oxygen concentration during solar photo-Fenton. Catalysis Today, 2011, 161, 247-254.	2.2	34

#	Article	IF	CITATIONS
199	Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts. Applied Catalysis B: Environmental, 2014, 144, 269-276.	10.8	34
200	Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole. Photochemical and Photobiological Sciences, 2009, 8, 1032-1039.	1.6	32
201	Coupling between high-frequency ultrasound and solar photo-Fenton at pilot scale for the treatment of organic contaminants: An initial approach. Ultrasonics Sonochemistry, 2015, 22, 527-534.	3.8	32
202	The influence of location on solar photo-Fenton: Process performance, photoreactor scaling-up and treatment cost. Renewable Energy, 2020, 145, 1890-1900.	4.3	32
203	Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation. Photochemical and Photobiological Sciences, 2009, 8, 644-651.	1.6	31
204	Photolysis of flumequine: Identification of the major phototransformation products and toxicity measures. Chemosphere, 2012, 88, 627-634.	4.2	31
205	Removal of microcontaminants from MWTP effluents by combination of membrane technologies and solar photo-Fenton at neutral pH. Catalysis Today, 2015, 252, 78-83.	2.2	30
206	Optimization of mild solar TiO2 photocatalysis as a tertiary treatment for municipal wastewater treatment plant effluents. Applied Catalysis B: Environmental, 2012, 128, 119-125.	10.8	29
207	Photo-Fenton treatment of saccharin in a solar pilot compound parabolic collector: Use of olive mill wastewater as iron chelating agent, preliminary results. Journal of Hazardous Materials, 2019, 372, 137-144.	6.5	29
208	Carbon-based cathodes degradation during electro-Fenton treatment at pilot scale: Changes in H2O2 electrogeneration. Chemosphere, 2021, 275, 129962.	4.2	29
209	Wastewater detoxification of organic and inorganic toxic compounds with solar collectors. Desalination, 1997, 108, 213-220.	4.0	28
210	Photocatalytic oxidation of acetonitrile in aqueous suspension of titanium dioxide irradiated by sunlight. Journal of Environmental Management, 2004, 8, 329-335.	1.7	28
211	Fe/TiO2/pH Interactions in Solar Degradation of Imidacloprid with TiO2/SiO2Photocatalysts at Pilot-Plant Scale. Industrial & Engineering Chemistry Research, 2006, 45, 8900-8908.	1.8	28
212	Formation of chlorinated by-products during photo-Fenton degradation of pyrimethanil under saline conditions. Influence on toxicity and biodegradability. Journal of Hazardous Materials, 2012, 217-218, 217-223.	6.5	28
213	Simultaneous removal of contaminants of emerging concern and pathogens from urban wastewater by homogeneous solar driven advanced oxidation processes. Science of the Total Environment, 2021, 766, 144320.	3.9	28
214	Pre-Industrial Experience in Solar Photocatalytic Mineralization of Real Wastewaters. Application to Pesticide Container Recycling. Water Science and Technology, 1999, 40, 123.	1.2	27
215	Hydrogen generation by irradiation of commercial CuO + TiO2 mixtures at solar pilot plant scale and in presence of organic electron donors. Applied Catalysis B: Environmental, 2019, 257, 117890.	10.8	27
216	Synthetic fresh-cut wastewater disinfection and decontamination by ozonation at pilot scale. Water Research, 2020, 170, 115304.	5.3	27

#	Article	IF	CITATIONS
217	Solar photocatalytic degradation of dichloroacetic acid with silica-supported titania at pilot-plant scale. Catalysis Today, 2007, 129, 59-68.	2.2	26
218	Photolytic and photocatalytic transformation of methadone in aqueous solutions under solar irradiation: Kinetics, characterization of major intermediate products and toxicity evaluation. Water Research, 2011, 45, 4815-4826.	5.3	26
219	Solar degradation of 5-amino-6-methyl-2-benzimidazolone by TiO2 and iron(III) catalyst with H2O2 and O2 as electron acceptors. Energy, 2004, 29, 853-860.	4.5	25
220	Photocatalytic treatment of dimethoate by solar photocatalysis at pilot plant scale. Environmental Chemistry Letters, 2005, 3, 118-121.	8.3	25
221	COST Action ES1403: New and Emerging challenges and opportunities in wastewater REUSe (NEREUS). Environmental Science and Pollution Research, 2015, 22, 7183-7186.	2.7	25
222	Sunlight advanced oxidation processes vs ozonation for wastewater disinfection and safe reclamation. Science of the Total Environment, 2021, 787, 147531.	3.9	25
223	Solar light assisted photodegradation of ethidium bromide over titania-based catalysts. Catalysis Today, 2007, 129, 79-85.	2.2	24
224	A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324. Journal of Hazardous Materials, 2008, 151, 780-788.	6.5	24
225	Application of solar photo-Fenton at circumneutral pH to nanofiltration concentrates for removal of pharmaceuticals in MWTP effluents. Environmental Science and Pollution Research, 2015, 22, 846-855.	2.7	24
226	On the design and operation of solar photo-Fenton open reactors for the removal of contaminants of emerging concern from WWTP effluents at neutral pH. Applied Catalysis B: Environmental, 2019, 256, 117801.	10.8	24
227	Natural chelating agents from olive mill wastewater to enable photo-Fenton-like reactions at natural pH. Catalysis Today, 2019, 328, 281-285.	2.2	24
228	Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal. Journal of Hazardous Materials, 2020, 384, 121372.	6.5	24
229	Elimination of the iodinated contrast agent iohexol in water, wastewater and urine matrices by application of photo-Fenton and ultrasound advanced oxidation processes. Journal of Environmental Chemical Engineering, 2015, 3, 2002-2009.	3.3	22
230	UVC-based advanced oxidation processes for simultaneous removal of microcontaminants and pathogens from simulated municipal wastewater at pilot plant scale. Environmental Science: Water Research and Technology, 2020, 6, 2553-2566.	1.2	22
231	Detoxification of aqueous solutions of the pesticide "Sevnol―by solar photocatalysis. Environmental Chemistry Letters, 2006, 3, 169-172.	8.3	21
232	Nanofiltration retentate treatment from urban wastewater secondary effluent by solar electrochemical oxidation processes. Separation and Purification Technology, 2021, 254, 117614.	3.9	21
233	Solar photo-Fenton at circumneutral pH using Fe(III)-EDDS compared to ozonation for tertiary treatment of urban wastewater: Contaminants of emerging concern removal and toxicity assessment. Chemical Engineering Journal, 2022, 431, 133474.	6.6	21
234	Solar heterogeneous and homogeneous photocatalysis as a pre-treatment option for biotreatment. Research on Chemical Intermediates, 2007, 33, 407-420.	1.3	20

#	Article	IF	CITATIONS
235	New insights on solar photocatalytic degradation of phenol over Fe-TiO2 catalysts: Photo-complex mechanism of iron lixiviates. Applied Catalysis B: Environmental, 2009, 93, 96-105.	10.8	20
236	Commercial fertilizer as effective iron chelate (Fe3+-EDDHA) for wastewater disinfection under natural sunlight for reusing in irrigation. Applied Catalysis B: Environmental, 2019, 253, 286-292.	10.8	20
237	Different approaches for the solar photocatalytic removal of micro-contaminants from aqueous environment: Titania vs. hybrid magnetic iron oxides. Catalysis Today, 2019, 328, 164-171.	2.2	20
238	New approaches to solar Advanced Oxidation Processes for elimination of priority substances based on electrooxidation and ozonation at pilot plant scale. Catalysis Today, 2020, 355, 844-850.	2.2	20
239	Electro-oxidation process assisted by solar energy for the treatment of wastewater with high salinity. Science of the Total Environment, 2020, 705, 135831.	3.9	20
240	Application of GC-MS and GC-AED to the evaluation of by-products formed by solar photo-fenton degradation of Methyltert-butyl ether in water. International Journal of Environmental Analytical Chemistry, 2004, 84, 149-159.	1.8	19
241	A Comparative Study of Supported TiO2 as Photocatalyst in Water Decontamination at Solar Pilot Plant Scale. Journal of Solar Energy Engineering, Transactions of the ASME, 2006, 128, 331-337.	1.1	19
242	Integration of Solar Photocatalysis and Membrane Bioreactor for Pesticides Degradation. Separation Science and Technology, 2010, 45, 1571-1578.	1.3	19
243	Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies. Environmental Science and Pollution Research, 2017, 24, 6317-6328.	2.7	19
244	New helio-photocatalytic–photovoltaic hybrid system for simultaneous water decontamination and solar energy conversion. Solar Energy, 2005, 79, 353-359.	2.9	18
245	Photo-Fenton degradation of alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol at solar pilot plant. International Journal of Environment and Pollution, 2006, 27, 135.	0.2	18
246	Solar photocatalytic treatment of landfill leachate using a solid mineral by-product as a catalyst. Chemosphere, 2012, 88, 1090-1096.	4.2	18
247	Fresh-cut wastewater reclamation: Techno-Economical assessment of solar driven processes at pilot plant scale. Applied Catalysis B: Environmental, 2020, 278, 119334.	10.8	18
248	Aluminized surface to improve solar light absorption in open reactors: Application for micropollutants removal in effluents from municipal wastewater treatment plants. Science of the Total Environment, 2021, 755, 142624.	3.9	18
249	Solar light assisted photodegradation of phenol with hydrogen peroxide over iron-doped titania catalysts: Role of iron leached/readsorbed species. Applied Catalysis B: Environmental, 2011, 108-109, 168-176.	10.8	17
250	Development of a photocatalytic zirconia-titania ultrafiltration membrane with anti-fouling and self-cleaning properties. Journal of Environmental Chemical Engineering, 2021, 9, 106671.	3.3	17
251	Treatment of 2,4-Dichlorophenol by Solar Photocatalysis: Comparison of Coupled Photocatalytic-Active Carbon vs. Active Carbon. Journal of Solar Energy Engineering, Transactions of the ASME, 2001, 123, 138-142.	1.1	16
252	Practical approach to the evaluation of industrial wastewater treatment by the application of advanced microbiological techniques. Ecotoxicology and Environmental Safety, 2018, 166, 123-131.	2.9	16

#	Article	IF	CITATIONS
253	Removal of pharmaceuticals in hospital wastewater by solar photo-Fenton with Fe3+-EDDS using a pilot raceway pond reactor: Transformation products and in silico toxicity assessment. Microchemical Journal, 2021, 164, 106014.	2.3	16
254	AOPs: recent advances to overcome barriers in the treatment of water, wastewater and air. Environmental Science and Pollution Research, 2017, 24, 5987-5990.	2.7	15
255	Legionella jordanis inactivation in water by solar driven processes: EMA-qPCR versus culture-based analyses for new mechanistic insights. Catalysis Today, 2017, 287, 15-21.	2.2	15
256	Advanced Oxidation Processes as sustainable technologies for the reduction of elderberry agro-industrial water impact. Water Resources and Industry, 2020, 24, 100137.	1.9	15
257	Confirming Pseudomonas putida as a reliable bioassay for demonstrating biocompatibility enhancement by solar photo-oxidative processes of a biorecalcitrant effluent. Journal of Hazardous Materials, 2009, 162, 1223-1227.	6.5	14
258	Effect of salinity on preconcentration of contaminants of emerging concern by nanofiltration: Application of solar photo-Fenton as a tertiary treatment. Science of the Total Environment, 2021, 756, 143593.	3.9	14
259	Solar-driven free chlorine advanced oxidation process for simultaneous removal of microcontaminants and microorganisms in natural water at pilot-scale. Chemosphere, 2022, 288, 132493.	4.2	14
260	Microbiological evaluation of combined advanced chemical-biological oxidation technologies for the treatment of cork boiling wastewater. Science of the Total Environment, 2019, 687, 567-576.	3.9	13
261	Simultaneous disinfection and microcontaminants elimination of urban wastewater secondary effluent by solar advanced oxidation sequential treatment at pilot scale. Journal of Hazardous Materials, 2022, 436, 129134.	6.5	13
262	Solar photo-assisted electrochemical processes applied to actual industrial and urban wastewaters: A practical approach based on recent literature. Chemosphere, 2021, 279, 130560.	4.2	12
263	Monitoring and Removal of Organic Micro-contaminants by Combining Membrane Technologies with Advanced Oxidation Processes. Current Organic Chemistry, 2018, 22, 1103-1119.	0.9	12
264	Integration of Environmental and Economic Performance of Processes. Case Study on Advanced Oxidation Processes for Wastewater Treatment. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	11
265	Modeling persulfate activation by iron and heat for the removal of contaminants of emerging concern using carbamazepine as model pollutant. Chemical Engineering Journal, 2020, 389, 124445.	6.6	11
266	Pilot-scale removal of microcontaminants by solar-driven photo-Fenton in treated municipal effluents: Selection of operating variables based on lab-scale experiments. Journal of Environmental Chemical Engineering, 2021, 9, 104788.	3.3	11
267	Pre-Industrial Experience in Solar Photocatalytic Mineralization of Real Wastewaters. Application to Pesticide Container Recycling. Water Science and Technology, 1999, 40, 123-130.	1.2	11
268	A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology. Water Science and Technology, 2001, 44, 271-278.	1.2	10
269	Overview on Pilot-Scale Treatments and New and Innovative Technologies for Hospital Effluent. Handbook of Environmental Chemistry, 2017, , 209-230.	0.2	10
270	Impact of water matrix and oxidant agent on the solar assisted photodegradation of a complex mix of pesticides over titania-reduced graphene oxide nanocomposites. Catalysis Today, 2021, 380, 114-124.	2.2	10

#	Article	IF	CITATIONS
271	2,4-Dichlorophenol degradation by means of heterogeneous photocatalysis. Comparison between laboratory and pilot plant performance. Chemical Engineering Journal, 2013, 232, 405-417.	6.6	9
272	Application of a multivariate analysis method for non-target screening detection of persistent transformation products during the cork boiling wastewater treatment. Science of the Total Environment, 2018, 633, 508-517.	3.9	9
273	Detoxification of Pesticide Containing Effluents by Solar Driven Fenton Process. Zeitschrift Fur Physikalische Chemie, 1999, 213, 67-74.	1.4	8
274	Dynamic Models for Hydrogen Peroxide Control in Solar Photo-Fenton Systems. Journal of Solar Energy Engineering, Transactions of the ASME, 2007, 129, 37-44.	1.1	8
275	Advanced oxidation process–biological system for wastewater containing a recalcitrant pollutant. Water Science and Technology, 2007, 55, 229-235.	1.2	8
276	Study of iron sources and hydrogen peroxide supply in the photoâ€Fenton process using acetaminophen as model contaminant. Journal of Chemical Technology and Biotechnology, 2013, 88, 636-643.	1.6	8
277	Strategies for hydrogen peroxide dosing based on dissolved oxygen concentration for solar photo-Fenton treatment of complex wastewater. Clobal Nest Journal, 2014, 16, 553-560.	0.3	8
278	Optimal performance assessment for a photo-Fenton degradation pilot plant driven by solar energy using artificial neural networks. International Journal of Energy Research, 2012, 36, 1314-1324.	2.2	7
279	Potential applications of solar reactions photocatalysed by the decatungstate anion. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1999, 96, 430-436.	0.2	7
280	LC/MS and LC/MS/MS Strategies for the Evaluation of Pesticide Intermediates Formed by Degradative Processes: Photo-Fenton Degradation of Diuron. ACS Symposium Series, 2003, , 66-95.	0.5	6
281	Removal of Xenobiotic Compounds from Water and Wastewater by Advanced Oxidation Processes. Environmental Pollution, 2010, , 387-412.	0.4	6
282	Advanced oxidation processes for environmental protection. Environmental Science and Pollution Research, 2014, 21, 12109-12111.	2.7	6
283	Future Trends in Photocatalysis for Environmental Applications. Journal of Hazardous Materials, 2019, 372, 1-2.	6.5	6
284	Olive mill wastewater reuse to enable solar photo-Fenton-like processes for the elimination of priority substances in municipal wastewater treatment plant effluents. Environmental Science and Pollution Research, 2020, 27, 38148-38154.	2.7	6
285	A Rational Analysis on Key Parameters Ruling Zerovalent Iron-Based Treatment Trains: Towards the Separation of Reductive from Oxidative Phases. Nanomaterials, 2021, 11, 2948.	1.9	6
286	Removal of microcontaminants by zero-valent iron solar processes at natural pH: Water matrix and oxidant agents effect. Science of the Total Environment, 2022, 819, 153152.	3.9	6
287	Solar photocatalytic decontamination of wastewater from the rinsing of pesticide containers. European Physical Journal Special Topics, 1999, 09, Pr3-277-Pr3-282.	0.2	5
288	Techno-economical assessment of solar detoxification systems with compound parabolic collectors. European Physical Journal Special Topics, 1999, 09, Pr3-259-Pr3-264.	0.2	5

#	Article	IF	CITATIONS
289	Detoxification of Pesticide in Water Using Solar Photocatalysis. ACS Symposium Series, 2003, , 113-126.	0.5	5
290	Dynamic modelling for cork boiling wastewater treatment at pilot plant scale. Environmental Science and Pollution Research, 2014, 21, 12182-12189.	2.7	5
291	Advanced oxidation technologies: advances and challenges in Iberoamerican countries. Environmental Science and Pollution Research, 2015, 22, 759-761.	2.7	5
292	Solar processes and ozonation for fresh-cut wastewater reclamation and reuse: Assessment of chemical, microbiological and chlorosis risks of raw-eaten crops. Water Research, 2021, 203, 117532.	5.3	5
293	Removal of Emerging Contaminants in Waste-water Treatment: Removal by Photo-catalytic Processes. Handbook of Environmental Chemistry, 2008, , 177-197.	0.2	5
294	CHAPTER 4. Solar Photocatalysis: Fundamentals, Reactors and Applications. RSC Energy and Environment Series, 2016, , 92-129.	0.2	5
295	Advanced Technologies for Emerging Contaminants Removal in Urban Wastewater. Handbook of Environmental Chemistry, 2014, , 145-169.	0.2	4
296	A Comparison of the Environmental Impact of Different AOPs: Risk Indexes. Molecules, 2015, 20, 503-518.	1.7	4
297	Evaluation of commercial zerovalent iron sources in combination with solar energy to remove microcontaminants from natural water at circumneutral pH. Chemosphere, 2022, 286, 131557.	4.2	4
298	Interfase Óxido/Electrolito: Fenómeno de transferencia de electrones. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2000, 39, 498-502.	0.9	4
299	Simple Models for the Control of Photo-Fenton by Monitoring H2O2. Journal of Advanced Oxidation Technologies, 2007, 10, .	0.5	3
300	Technologies for Advanced Wastewater Treatment in the Mediterranean Region. Handbook of Environmental Chemistry, 2010, , 1-28.	0.2	3
301	Removal of Pesticides from Water and Wastewater by Solar-Driven Photocatalysis. Springer Briefs in Molecular Science, 2012, , 59-76.	0.1	3
302	Solar Photocatalytic Processes: Water Decontamination and Disinfection. , 2013, , 371-393.		3
303	Solar chemistry and photocatalysis: environmental applications. Environmental Science and Pollution Research, 2019, 26, 36077-36079.	2.7	3
304	Modelling micropollutant removal by solar photo-Fenton. Global Nest Journal, 2014, 16, 445-454.	0.3	3
305	Valorization of UWWTP effluents for ammonium recovery and MC elimination by advanced AOPs. Science of the Total Environment, 2022, 823, 153693.	3.9	3
306	Assessment of a Novel Photocatalytic TiO2-Zirconia Ultrafiltration Membrane and Combination with Solar Photo-Fenton Tertiary Treatment of Urban Wastewater. Catalysts, 2022, 12, 552.	1.6	3

#	Article	IF	CITATIONS
307	Introduction by guest editors. Catalysis Today, 2005, 101, 185-186.	2.2	2
308	Removal of Emerging Contaminants in Waste-water Treatment: Removal by Photo-catalytic Processes. , 2007, , 177-197.		2
309	Comparison of Photo-Fenton Treatment and Coupled Photo-Fenton and Biological Treatment for Detoxification of Pharmaceutical Industry Contaminants. Journal of Advanced Oxidation Technologies, 2008, 11, .	0.5	2
310	Elimination of organic micro-contaminants in municipal wastewater by a combined immobilized biomass reactor and solar photo-Fenton tertiary treatment. Journal of Advanced Oxidation Technologies, 2017, 20, .	0.5	2
311	Economic Assessment and Possible Industrial Application of a (Photo)catalytic Process. , 2019, , 235-267.		2
312	Removal and Degradation of Pharmaceutically Active Compounds (PhACs) in Wastewaters by Solar Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 299-326.	0.2	2
313	CHAPTER 6. Process Integration. Concepts of Integration and Coupling of Photocatalysis with Other Processes. RSC Energy and Environment Series, 2016, , 157-173.	0.2	2
314	Introduction by the guest editors. Photochemical and Photobiological Sciences, 2009, 8, 581.	1.6	1
315	An introduction by the guest editor to a selection of papers from the 10th European Meeting on Solar Chemistry & Photocatalysis: Environmental Applications - SPEA10. Photochemical and Photobiological Sciences, 2019, 18, 836-836.	1.6	1
316	Removal of Pharmaceutically Active Compounds (PhACs) in Wastewater by Ozone and Advanced Oxidation Processes. Handbook of Environmental Chemistry, 2020, , 269-298.	0.2	1
317	A comparison of prototype compound parabolic collector-reactors (CPC) on the road to SOLARDETOX technology. Water Science and Technology, 2001, 44, 271-8.	1.2	1
318	Environmental applications of solar energy (introduction by guest editors). Solar Energy, 2005, 79, 341-342.	2.9	0
319	Introduction by the guest editors. Photochemical and Photobiological Sciences, 2011, 10, 331.	1.6	Ο
320	Introduction by the guest editors. Photochemical and Photobiological Sciences, 2013, 12, 593.	1.6	0
321	Introduction by guest editors. Photochemical and Photobiological Sciences, 2017, 16, 8-9.	1.6	Ο
322	Introduction by guest editors. Catalysis Today, 2017, 280, 1.	2.2	0
323	Preface – Mat. for photocatalysis. Catalysis Today, 2017, 284, 1-2.	2.2	0
324	Introduction by Guest Editors. Catalysis Today, 2019, 328, 1.	2.2	0

#	Article	IF	CITATIONS
325	Solar Detoxification and Disinfection of Water. , 2021, , 1-28.		Ο
326	Compound Parabolic Concentrator Technology Development To Commercial Solar Detoxification Applications. , 2000, , 427-436.		0
327	Photoelectrochemical experiments under various solar light concentration ratios. European Physical Journal Special Topics, 1999, 09, Pr3-301-Pr3-306.	0.2	Ο
328	Solar Detoxification and Disinfection of Water. , 2022, , 453-480.		0