Yun Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264609/publications.pdf

Version: 2024-02-01

81743 106150 5,216 174 39 65 h-index citations g-index papers 174 174 174 3102 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fuzzy Adaptive Quantized Control for a Class of Stochastic Nonlinear Uncertain Systems. IEEE Transactions on Cybernetics, 2016, 46, 524-534.	6.2	267
2	Adaptive Consensus of Nonlinear Multi-Agent Systems With Non-Identical Partially Unknown Control Directions and Bounded Modelling Errors. IEEE Transactions on Automatic Control, 2017, 62, 4654-4659.	3.6	169
3	Adaptive Fuzzy Control for a Class of Stochastic Pure-Feedback Nonlinear Systems With Unknown Hysteresis. IEEE Transactions on Fuzzy Systems, 2016, 24, 140-152.	6.5	157
4	Adaptive Neural Control for a Class of Nonlinear Time-Varying Delay Systems With Unknown Hysteresis. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25, 2129-2140.	7.2	156
5	A Switched-Capacitor Bidirectional DC–DC Converter With Wide Voltage Gain Range for Electric Vehicles With Hybrid Energy Sources. IEEE Transactions on Power Electronics, 2018, 33, 9459-9469.	5.4	156
6	Input-Parallel Output-Series DC-DC Boost Converter With a Wide Input Voltage Range, For Fuel Cell Vehicles. IEEE Transactions on Vehicular Technology, 2017, 66, 7771-7781.	3.9	147
7	Adaptive Neural Output Feedback Control of Output-Constrained Nonlinear Systems With Unknown Output Nonlinearity. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26, 1789-1802.	7.2	133
8	Adaptive Tracking Control for A Class of Nonlinear Systems With a Fuzzy Dead-Zone Input. IEEE Transactions on Fuzzy Systems, 2015, 23, 193-204.	6.5	133
9	DC–DC Boost Converter With a Wide Input Range and High Voltage Gain for Fuel Cell Vehicles. IEEE Transactions on Power Electronics, 2019, 34, 4100-4111.	5 . 4	124
10	Interleaved Switched-Capacitor Bidirectional DC-DC Converter With Wide Voltage-Gain Range for Energy Storage Systems. IEEE Transactions on Power Electronics, 2018, 33, 3852-3869.	5.4	116
11	Adaptive Fuzzy Output-Feedback Controller Design for Nonlinear Systems via Backstepping and Small-Gain Approach. IEEE Transactions on Cybernetics, 2014, 44, 1714-1725.	6.2	102
12	A Wide Input-Voltage Range Quasi-Z-Source Boost DC–DC Converter With High-Voltage Gain for Fuel Cell Vehicles. IEEE Transactions on Industrial Electronics, 2018, 65, 5201-5212.	5.2	102
13	Fuzzy Adaptive Inverse Compensation Method to Tracking Control of Uncertain Nonlinear Systems With Generalized Actuator Dead Zone. IEEE Transactions on Fuzzy Systems, 2017, 25, 191-204.	6.5	101
14	Adjustable Proportional Hybrid SVPWM Strategy for Neutral-Point-Clamped Three-Level Inverters. IEEE Transactions on Industrial Electronics, 2013, 60, 4234-4242.	5.2	98
15	Hybrid Switched-Capacitor/Switched-Quasi-Z-Source Bidirectional DC–DC Converter With a Wide Voltage Gain Range for Hybrid Energy Sources EVs. IEEE Transactions on Industrial Electronics, 2019, 66, 2680-2690.	5.2	98
16	LLC resonant converter topologies and industrial applications — A review. Chinese Journal of Electrical Engineering, 2020, 6, 73-84.	2.3	98
17	Wide Input-Voltage Range Boost Three-Level DC–DC Converter With Quasi-Z Source for Fuel Cell Vehicles. IEEE Transactions on Power Electronics, 2017, 32, 6728-6738.	5 . 4	92
18	Neural Adaptive Event-Triggered Control for Nonlinear Uncertain Stochastic Systems With Unknown Hysteresis. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30, 3300-3312.	7.2	89

#	Article	IF	CITATIONS
19	A Common Ground Switched-Quasi-\$Z\$ -Source Bidirectional DC–DC Converter With Wide-Voltage-Gain Range for EVs With Hybrid Energy Sources. IEEE Transactions on Industrial Electronics, 2018, 65, 5188-5200.	5.2	80
20	Adaptive Consensus Tracking Control of Uncertain Nonlinear Multiagent Systems With Predefined Accuracy. IEEE Transactions on Cybernetics, 2021, 51, 405-415.	6.2	80
21	Adaptive Quantized Controller Design Via Backstepping and Stochastic Small-Gain Approach. IEEE Transactions on Fuzzy Systems, 2016, 24, 330-343.	6.5	76
22	A Switched-Capacitor Interleaved Bidirectional Converter With Wide Voltage-Gain Range for Super Capacitors in EVs. IEEE Transactions on Power Electronics, 2020, 35, 1536-1547.	5.4	75
23	Adaptive Fuzzy Tracking Control of Nonlinear Systems With Asymmetric Actuator Backlash Based on a New Smooth Inverse. IEEE Transactions on Cybernetics, 2016, 46, 1250-1262.	6.2	74
24	Adaptive asymptotic tracking control of uncertain nonlinear system with input quantization. Systems and Control Letters, 2016, 96, 23-29.	1.3	73
25	Hybrid Boost Three-Level DC–DC Converter With High Voltage Gain for Photovoltaic Generation Systems. IEEE Transactions on Power Electronics, 2013, 28, 3659-3664.	5.4	71
26	Single-Switch, Wide Voltage-Gain Range, Boost DC–DC Converter for Fuel Cell Vehicles. IEEE Transactions on Vehicular Technology, 2018, 67, 134-145.	3.9	68
27	Asymmetric Actuator Backlash Compensation in Quantized Adaptive Control of Uncertain Networked Nonlinear Systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28, 294-307.	7.2	63
28	An Impedance Network Boost Converter With a High-Voltage Gain. IEEE Transactions on Power Electronics, 2017, 32, 6661-6665.	5.4	60
29	Event Trigger Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures. IEEE Transactions on Fuzzy Systems, 2018, 26, 3770-3781.	6.5	60
30	Adaptive Neural Control of a Class of Stochastic Nonlinear Uncertain Systems With Guaranteed Transient Performance. IEEE Transactions on Cybernetics, 2020, 50, 2971-2981.	6.2	57
31	Adaptive compensation for infinite number of actuator failures based on tuning function approach. Automatica, 2018, 87, 365-374.	3.0	56
32	Fuzzy Adaptive Compensation Control of Uncertain Stochastic Nonlinear Systems With Actuator Failures and Input Hysteresis. IEEE Transactions on Cybernetics, 2019, 49, 2-13.	6.2	55
33	Event-Triggered Neural Control of Nonlinear Systems With Rate-Dependent Hysteresis Input Based on a New Filter. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1270-1284.	7.2	54
34	Fixed-Time Fuzzy Control for a Class of Nonlinear Systems. IEEE Transactions on Cybernetics, 2022, 52, 3880-3887.	6.2	51
35	Adaptive Fuzzy Output-Feedback Control for Switched Nonlinear Systems With Stable and Unstable Unmodeled Dynamics. IEEE Transactions on Fuzzy Systems, 2020, 28, 1825-1839.	6.5	49
36	An Efficient Control Strategy for a Five-Level Inverter Comprising Flying-Capacitor Asymmetric H-Bridge. IEEE Transactions on Industrial Electronics, 2011, 58, 4000-4009.	5.2	47

#	Article	IF	Citations
37	Adaptive Compensation for Infinite Number of Time-Varying Actuator Failures in Fuzzy Tracking Control of Uncertain Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2018, 26, 474-486.	6.5	47
38	An Improved Deadbeat Control Method for Single-Phase PWM Rectifiers in Charging System for EVs. IEEE Transactions on Vehicular Technology, 2019, 68, 9672-9681.	3.9	45
39	Adaptive quantized fuzzy control of stochastic nonlinear systems with actuator dead-zone. Information Sciences, 2016, 370-371, 385-401.	4.0	42
40	Indirect Adaptive Fuzzy Control Design With Guaranteed Tracking Error Performance For Uncertain Canonical Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2019, 27, 1139-1150.	6.5	39
41	Model-Free H _{â^ž} Optimal Tracking Control of Constrained Nonlinear Systems via an Iterative Adaptive Learning Algorithm. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4097-4108.	5.9	39
42	A Method for the Suppression of Fluctuations in the Neutral-Point Potential of a Three-Level NPC Inverter With a Capacitor-Voltage Loop. IEEE Transactions on Power Electronics, 2017, 32, 825-836.	5.4	38
43	Adaptive fuzzy output feedback control for nonlinear systems based on event-triggered mechanism. Information Sciences, 2019, 486, 419-433.	4.0	35
44	Event-Triggered Adaptive Fuzzy Control for Uncertain Strict-Feedback Nonlinear Systems With Guaranteed Transient Performance. IEEE Transactions on Fuzzy Systems, 2019, 27, 2327-2337.	6.5	32
45	Privacy-Preserving Federated Deep Learning with Irregular Users. IEEE Transactions on Dependable and Secure Computing, 2020, , 1-1.	3.7	32
46	Event-Triggered Adaptive Fuzzy Tracking Control With Guaranteed Transient Performance for MIMO Nonlinear Uncertain Systems. IEEE Transactions on Cybernetics, 2021, 51, 736-749.	6.2	31
47	Integrated High- and Low-Frequency Current Ripple Suppressions in a Single-Phase Onboard Charger for EVs. IEEE Transactions on Power Electronics, 2021, 36, 1717-1729.	5.4	29
48	Adaptive Inversion-Based Fuzzy Compensation Control of Uncertain Pure-Feedback Systems With Asymmetric Actuator Backlash. IEEE Transactions on Fuzzy Systems, 2017, 25, 141-155.	6.5	28
49	Adaptive fuzzy quantized control of time-delayed nonlinear systems with communication constraint. Fuzzy Sets and Systems, 2017, 314, 61-78.	1.6	27
50	Adaptive Neural Quantized Control for a Class of MIMO Switched Nonlinear Systems With Asymmetric Actuator Dead-Zone. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 1927-1941.	7.2	27
51	Coordinated Motion/Force Control of Multiarm Robot With Unknown Sensor Nonlinearity and Manipulated Object's Uncertainty. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 47, 1123-1134.	5.9	26
52	Second-Harmonic Ripple Voltage Suppression of Integrated Single-Phase Pulsewidth Modulation Rectifier Charging System for EVs. IEEE Transactions on Power Electronics, 2020, 35, 3616-3626.	5.4	26
53	Forming a Reliable Hybrid Microgrid Using Electric Spring Coupled With Non-Sensitive Loads and ESS. IEEE Transactions on Smart Grid, 2020, 11, 2867-2879.	6.2	26
54	A Generalized Additional Voltage Pumping Solution for High-Step-Up Converters. IEEE Transactions on Power Electronics, 2019, 34, 6456-6467.	5.4	25

#	Article	IF	CITATIONS
55	A Low-Current Ripple and Wide Voltage-Gain Range Bidirectional DC–DC Converter With Coupled Inductor. IEEE Transactions on Power Electronics, 2020, 35, 1525-1535.	5.4	25
56	A Multiple Modular Isolated DC/DC Converter With Bidirectional Fault Handling and Efficient Energy Conversion for DC Distribution Network. IEEE Transactions on Power Electronics, 2020, 35, 11502-11517.	5.4	25
57	An Input-Voltage-Sharing Control Strategy of Input-Series-Output-Parallel Isolated Bidirectional DC/DC Converter for DC Distribution Network. IEEE Transactions on Power Electronics, 2021, , 1-1.	5.4	25
58	Unique Modular Structure of Multicell High-Boost Converters With Reduced Component Currents. IEEE Transactions on Power Electronics, 2018, 33, 7795-7804.	5.4	24
59	Adaptive Fuzzy Tracking Control of Uncertain Nonlinear Systems Subject to Actuator Dead Zone With Piecewise Time-Varying Parameters. IEEE Transactions on Fuzzy Systems, 2019, 27, 1493-1505.	6.5	24
60	Adaptive Fuzzy Quantized Control for Nonlinear Systems With Hysteretic Actuator Using a New Filter-Connected Quantizer. IEEE Transactions on Cybernetics, 2020, 50, 876-889.	6.2	23
61	The Software/Hardware Co-Design and Implementation of SM2/3/4 Encryption/Decryption and Digital Signature System. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 2055-2066.	1.9	23
62	Adaptive control of MIMO mechanical systems with unknown actuator nonlinearities based on the Nussbaum gain approach. IEEE/CAA Journal of Automatica Sinica, 2016, 3, 26-34.	8.5	22
63	Distributed adaptive neural control for uncertain multi-agent systems with unknown actuator failures and unknown dead zones. Nonlinear Dynamics, 2020, 99, 1001-1017.	2.7	22
64	An AC-DC Coupled Droop Control Strategy for VSC-Based DC Microgrids. IEEE Transactions on Power Electronics, 2022, 37, 6568-6584.	5.4	22
65	Suppression Method of Current Harmonic for Three-Phase PWM Rectifier in EV Charging System. IEEE Transactions on Vehicular Technology, 2020, 69, 9634-9642.	3.9	21
66	Event-Triggered Adaptive Fuzzy Tracking Control for Uncertain Nonlinear Systems Preceded by Unknown Prandtl–Ishlinskii Hysteresis. IEEE Transactions on Cybernetics, 2021, 51, 2979-2992.	6.2	21
67	Quantisationâ€based robust control of uncertain nonâ€strictâ€feedback nonâ€linear systems under arbitrary switching. IET Control Theory and Applications, 2016, 10, 582-589.	1.2	20
68	Control Design and Performance Analysis of a Double-Switched LLC Resonant Rectifier for Unity Power Factor and Soft-Switching. IEEE Access, 2020, 8, 44511-44521.	2.6	20
69	Inverse Optimal Design of Direct Adaptive Fuzzy Controllers for Uncertain Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 1669-1682.	6.5	20
70	Prescribed-time containment control with prescribed performance for uncertain nonlinear multi-agent systems. Journal of the Franklin Institute, 2021, 358, 1782-1811.	1.9	20
71	Adaptive Control of Noncanonical Neural-Network Nonlinear Systems With Unknown Input Dead-Zone Characteristics. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31, 3346-3360.	7.2	19
72	Adaptive fuzzy control of switched nonlinear systems with uncertain dead-zone: A mode-dependent fuzzy dead-zone model. Neurocomputing, 2021, 432, 133-144.	3.5	19

#	Article	IF	Citations
73	Distributed adaptive fuzzy control approach for prescribed-time containment of uncertain nonlinear multi-agent systems with unknown hysteresis. Nonlinear Dynamics, 2021, 105, 257-275.	2.7	19
74	Adaptive neural control for switched nonlinear systems with unmodeled dynamics and unknown output hysteresis. Neurocomputing, 2019, 341, 107-117.	3.5	18
75	Distributed adaptive cooperative control for uncertain nonlinear multi-agent systems with hysteretic quantized input. Journal of the Franklin Institute, 2020, 357, 4645-4663.	1.9	18
76	A Dual-Active-Bridge With Half-Bridge Submodules DC Solid-State Transformer for DC Distribution Networks. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 1891-1904.	3.7	18
77	Immunizing Variable Frequency Transformer From Dual-Side Asymmetrical Grid Faults via a Single-Converter-Based Novel Control Strategy. IEEE Transactions on Power Delivery, 2020, 35, 1330-1338.	2.9	17
78	Neuroadaptive asymptotic consensus tracking control for a class of uncertain nonlinear multiagent systems with sensor faults. Information Sciences, 2022, 584, 685-700.	4.0	17
79	Advanced fourâ€modeâ€modulationâ€based fourâ€switch nonâ€inverting buck–boost converter with extra operation zone. IET Power Electronics, 2020, 13, 2049-2059.	1.5	16
80	Multi-Stream Fusion Network With Generalized Smooth L ₁ Loss for Single Image Dehazing. IEEE Transactions on Image Processing, 2021, 30, 7620-7635.	6.0	16
81	Adaptive neural inverse optimal tracking control for uncertain multi-agent systems. Information Sciences, 2022, 584, 31-49.	4.0	16
82	Duty Cycle Control Strategy for Dual-Side LCC Resonant Converter in Wireless Power Transfer Systems. IEEE Transactions on Transportation Electrification, 2022, 8, 1944-1955.	5.3	16
83	Adaptive inverse optimal consensus control for uncertain high-order multiagent systems with actuator and sensor failures. Information Sciences, 2022, 605, 119-135.	4.0	16
84	Adaptive Fixed-Time Neural Control for Uncertain Nonlinear Multiagent Systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10346-10358.	7.2	16
85	Direct Adaptive Fuzzy Control Scheme With Guaranteed Tracking Performances for Uncertain Canonical Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 2022, 30, 818-829.	6.5	15
86	Command filtered neural control of multi-agent systems with input quantization and unknown control direction. Neurocomputing, 2021, 430, 47-57.	3.5	15
87	Review of DC-DC Converter Topologies Based on Impedance Network with Wide Input Voltage Range and High Gain for Fuel Cell Vehicles. Automotive Innovation, 2021, 4, 351-372.	3.1	15
88	Adaptive inverse compensation for actuator backlash with piecewise time-varying parameters. International Journal of Control, 2018, 91, 337-345.	1.2	14
89	Indirect Fuzzy Control of Nonlinear Systems With Unknown Input and State Hysteresis Using an Alternative Adaptive Inverse. IEEE Transactions on Fuzzy Systems, 2021, 29, 500-514.	6.5	14
90	Four Novel Embedded Z-Source DC–DC Converters. IEEE Transactions on Power Electronics, 2022, 37, 607-616.	5.4	14

#	Article	IF	CITATIONS
91	Design and HIL Realization of an Online Adaptive Dynamic Programming Approach for Real-Time Economic Operations of Household Energy Systems. IEEE Transactions on Smart Grid, 2022, 13, 330-341.	6.2	13
92	Distributed Adaptive Neural Fixed-Time Tracking Control of Multiple Uncertain Mechanical Systems With Actuation Dead Zones. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3859-3872.	5.9	12
93	A Self-Protected Single-Stage LLC Resonant Rectifier. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3361-3372.	3.7	12
94	Adaptive neural asymptotic control for uncertain nonlinear multiagent systems with a fuzzy dead zone constraint. Fuzzy Sets and Systems, 2022, 432, 152-167.	1.6	12
95	First Error-Based Supervised Learning Algorithm for Spiking Neural Networks. Frontiers in Neuroscience, 2019, 13, 559.	1.4	11
96	Enhanced One-Cycle Control for Multicell Power Converters. IEEE Transactions on Power Electronics, 2020, 35, 8846-8856.	5.4	11
97	A Novel Single-Input–Dual-Output Impedance Network Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5, 1133-1141.	3.7	10
98	Adaptive Fuzzy Output Feedback Quantized Control for Uncertain Nonlinear Hysteretic Systems Using a New Feedback-Based Quantizer. IEEE Transactions on Fuzzy Systems, 2019, 27, 1738-1752.	6.5	10
99	Adaptive Neural Control for Switched Nonlinear Systems With Unstable Dynamic Uncertainties: A Small Gain-Based Approach. IEEE Transactions on Cybernetics, 2022, 52, 5654-5667.	6.2	10
100	Adaptive neural control for uncertain switched nonlinear systems with a switched filter-contained hysteretic quantizer. Information Sciences, 2021, 581, 345-361.	4.0	10
101	High Ratio Bidirectional DC-DC Converter with a Synchronous Rectification H-Bridge for Hybrid Energy Sources Electric Vehicles. Journal of Power Electronics, 2016, 16, 2035-2044.	0.9	10
102	A Bidirectional Three-level DC-DC Converter with a Wide Voltage Conversion Range for Hybrid Energy Source Electric Vehicles. Journal of Power Electronics, 2017, 17, 334-345.	0.9	10
103	Constrained Decoupling Adaptive Dynamic Programming for A Partially Uncontrollable Time-Delayed Model of Energy Systems. Information Sciences, 2022, 608, 1352-1374.	4.0	10
104	An Aerodynamics-Based Novel Optimal Power Extraction Strategy for Offshore Wind Farms With Central VSCs. IEEE Access, 2018, 6, 44351-44361.	2.6	9
105	Symmetric Dual-Switch Converter. IEEE Transactions on Power Electronics, 2020, 35, 11955-11964.	5.4	9
106	Sneak Circuit Theory Based Approach to Avoiding Short-Circuit Paths in Reconfigurable Battery Systems. IEEE Transactions on Industrial Electronics, 2021, 68, 12353-12363.	5.2	9
107	Towards Accurate Pulmonary Nodule Detection by Representing Nodules as Points With High-Resolution Network. IEEE Access, 2020, 8, 157391-157402.	2.6	8
108	Adaptive neural consensus tracking control for multi-agent systems with unknown state and input hysteresis. Nonlinear Dynamics, 2021, 105, 1625-1641.	2.7	8

#	Article	IF	CITATIONS
109	Edge Server Placement for Vehicular <i>Ad Hoc</i> Networks in Metropolitans. IEEE Internet of Things Journal, 2022, 9, 1575-1590.	5.5	8
110	Adaptive Fuzzy Fixed-Time Control of Switched Systems: Mode-Dependent Power Integrator Method. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 6998-7012.	5.9	8
111	A Graph-Modeling Approach to Topology Simplification in Power Converters. IEEE Transactions on Power Electronics, 2022, 37, 8248-8261.	5.4	8
112	Adaptive Modulation Strategy for Modular Multilevel High-Frequency DC Transformer in DC Distribution Networks. IEEE Access, 2020, 8, 16397-16408.	2.6	7
113	Step-up switched-capacitor multilevel inverter employing multiple inputs with reduced switches. Journal of Power Electronics, 2021, 21, 986-997.	0.9	7
114	A new recursive least squares-based learning algorithm for spiking neurons. Neural Networks, 2021, 138, 110-125.	3.3	7
115	A novel fuzzy control with filter-based event-triggered mechanism for nonlinear uncertain stochastic systems suffered input hysteresis. Fuzzy Sets and Systems, 2022, 432, 68-88.	1.6	7
116	Adaptive neural design of fixed-time controllers for MIMO systems with nonlinear static and dynamic interactions. Neurocomputing, 2021, 457, 293-305.	3.5	7
117	Event-triggered fuzzy control for nonlinear time-delay system with full-state constraints and unknown hysteresis. Journal of the Franklin Institute, 2022, 359, 1582-1611.	1.9	7
118	Jet-HR1: Stepping Posture Optimization for Bipedal Robot Over Large Ditch Based on a Ducted-fan Propulsion System., 2018,,.		6
119	Vision-Based Adaptive Neural Positioning Control of Quadrotor Aerial Robot. IEEE Access, 2019, 7, 75018-75031.	2.6	6
120	Extended dimension fuzzy adaptive control for nonlinear uncertain stochastic systems with actuator constraints. Nonlinear Dynamics, 2019, 98, 1315-1329.	2.7	6
121	Sneak Circuit Identification of an Improved Boost Converter With Soft-Switching Realization. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 2394-2402.	3.7	6
122	Design of A Two-Dimensional "T―Shaped Metamaterial with Wideband, Low Loss. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.	1.1	6
123	Motion Planning for Bandaging Task With Abnormal Posture Detection and Avoidance. IEEE/ASME Transactions on Mechatronics, 2020, 25, 2364-2375.	3.7	6
124	Integral-interval barrier Lyapunov function based control of switched systems with fuzzy saturation-deadzone. Nonlinear Dynamics, 2021, 104, 3809-3826.	2.7	6
125	Event-triggered fuzzy adaptive control of nonlinear switched systems with predefined accuracy and mismatched switching. Fuzzy Sets and Systems, 2022, 443, 283-307.	1.6	6
126	A General Polynomial Reverse Design of Step-Up Converters for EV Battery Applications. IEEE Transactions on Vehicular Technology, 2022, 71, 2628-2638.	3.9	6

#	Article	IF	CITATIONS
127	Soft-Switching Operation With a Variable Switching Frequency Control for Switched-Quasi-Z-Source Bidirectional DC–DC Converter in EVs. IEEE Transactions on Industrial Electronics, 2023, 70, 384-395.	5.2	6
128	An anyâ€unitâ€ŧoâ€anyâ€unit method for hybridâ€structured voltage equalizer in seriesâ€connected battery/superâ€capacitor strings. International Journal of Circuit Theory and Applications, 2022, 50, 2016-2034.	1.3	6
129	Rapid and generalised space vector modulation algorithm for cascaded multilevel converter based on zeroâ€order voltage constraint. IET Power Electronics, 2016, 9, 989-996.	1.5	5
130	An Enhanced Hybrid Switching-Frequency Modulation Strategy for Fuel Cell Vehicle Three-Level DC-DC Converters with Quasi-Z Source. Energies, 2018, 11, 1026.	1.6	5
131	Optimal Multi-Objective Burn-In Policy Based on Time-Transformed Wiener Degradation Process. IEEE Access, 2019, 7, 73529-73539.	2.6	5
132	Error evaluation of Judd-Ofelt spectroscopic analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 239, 118536.	2.0	5
133	Generalized Flexible Voltage Pumping Module for Extra High Voltage Gain Converters in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2021, 70, 6463-6471.	3.9	5
134	Three-Dimensional Posture Optimization for Biped Robot Stepping over Large Ditch Based on a Ducted-Fan Propulsion System. , 2020, , .		5
135	Optimized adaptive consensus tracking control for uncertain nonlinear multiagent systems using a new event-triggered communication mechanism. Information Sciences, 2022, 605, 301-316.	4.0	5
136	Analysis of temperature/pressure sensitivity of the resonant wavelength of long-period channel waveguide gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2008, 25, 2776.	0.8	4
137	Improved English Immersion Teaching Methods for the Course of Power Electronics for Energy Storage System in China. IEEE Access, 2018, 6, 50683-50692.	2.6	4
138	A Coupled-Inductor DC-DC Converter with Input Current Ripple Minimization for Fuel Cell Vehicles. Energies, 2019, 12, 1689.	1.6	4
139	Boost-type push–pull converter with reduced switches. Journal of Power Electronics, 2020, 20, 645-656.	0.9	4
140	An extendable singleâ€switch <i>n</i> àê€ell boost converter with high voltage gain and low components stress for renewable energy. International Journal of Circuit Theory and Applications, 2020, 48, 817-831.	1.3	4
141	Adaptive Inverse Compensation for Unknown Input and Output Hysteresis Using Output Feedback Neural Control. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3224-3236.	5.9	4
142	Biomimetic Flip-and-Flap Strategy of Flying Objects for Perching on Inclined Surfaces. IEEE Robotics and Automation Letters, 2021, 6, 5199-5206.	3.3	4
143	Motor Driver-Based Topology of Integrated On-Board Charging System and Data-Driven Inductance Identification Method. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 12, 310-319.	2.7	4
144	Decentralized Adaptive Neural Inverse Optimal Control of Nonlinear Interconnected Systems. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 8840-8851.	7.2	4

#	Article	IF	CITATIONS
145	Jet-HR2: A Flying Bipedal Robot Based on Thrust Vector Control. IEEE Robotics and Automation Letters, 2022, 7, 4590-4597.	3.3	4
146	Event-triggered adaptive neural control for uncertain nonstrict-feedback nonlinear systems with full-state constraints and unknown actuator failures. Neurocomputing, 2022, 490, 269-282.	3.5	4
147	Reinforcement learning based adaptive optimal control for constrained nonlinear system via a novel state-dependent transformation. ISA Transactions, 2023, 133, 29-41.	3.1	4
148	Hybrid space vector PWM strategy for three-level NPC inverters with optimal extension mode., 2014,,.		3
149	Reliability Modeling and Maintenance Policy Optimization for Deteriorating System Under Random Shock. Journal of Shanghai Jiaotong University (Science), 2018, 23, 791-797.	0.5	3
150	Dividing the Neighbors is Not Enough: Adding Confusion Makes Local Descriptor Stronger. IEEE Access, 2019, 7, 136106-136115.	2.6	3
151	Optimal Burn-in Strategy for High Reliable Products Using Convolutional Neural Network. IEEE Access, 2019, 7, 178511-178521.	2.6	3
152	Advanced smallâ€signalâ€based analytical approach to modelling highâ€order power converters. IET Power Electronics, 2019, 12, 228-236.	1.5	3
153	Adaptive Actuator Failure Compensation Control Schemes for Uncertain Noncanonical Neural-Network Systems. IEEE Transactions on Cybernetics, 2022, 52, 2635-2648.	6.2	3
154	A Hybrid Isolated Bidirectional DC/DC Solid-State Transformer for DC Distribution Network. IEEE Access, 2021, 9, 159059-159070.	2.6	3
155	Switched-capacitor-based high-gain DC–DC converter for fuel cell vehicle powertrain. Journal of Power Electronics, 2022, 22, 557-568.	0.9	3
156	A Kernel-Based Real-Time Adaptive Dynamic Programming Method for Economic Household Energy Systems. IEEE Transactions on Industrial Informatics, 2023, 19, 2374-2384.	7.2	3
157	A high performance grid interfacing power conversion system for renewable power generation applications. , 2012 , , .		2
158	A Five-Terminal Impedance Network Based Three-Port Converter. IEEE Access, 2018, 6, 29474-29485.	2.6	2
159	A Novel Impedance-Network-Based Electric Spring. IEEE Access, 2020, 8, 129123-129135.	2.6	2
160	A Deep Quadruplet Network for Local Descriptor Learning. IEEE Access, 2020, 8, 16807-16815.	2.6	2
161	Nonâ€electrolyticâ€capacitor boost converter with nonâ€pulsating rippleâ€free output current. International Journal of Circuit Theory and Applications, 2021, 49, 2719-2735.	1.3	2
162	Replacing All ECs With NECs in Step-Up Convertersâ€"A Systematic Approach. IEEE Transactions on Power Electronics, 2022, 37, 31-36.	5.4	2

#	Article	IF	CITATIONS
163	Online and hard constrained adaptive dynamic programming algorithm for energy storage control in smart buildings. Optimal Control Applications and Methods, 2023, 44, 1074-1091.	1.3	2
164	Adaptive Neural Design of Consensus Controllers for Nonlinear Multiagent Systems Under Switching Topologies. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53, 309-320.	5.9	2
165	Power Model Free Voltage Ripple Suppression Method of Three-Phase PWM Rectifier Under Unbalanced Grid. IEEE Transactions on Power Electronics, 2022, 37, 13799-13807.	5 . 4	2
166	Simple symmetric switched inductor high step-down converter. Journal of Power Electronics, 2022, 22, 1639-1651.	0.9	2
167	Expression-invariant face recognition using three-dimensional weighted walkthrough and centroid distance. Journal of Electronic Imaging, 2015, 24, 053007.	0.5	1
168	Comment on "Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+-doped garnets―[J. Appl. Phys. 93(5), 2602 (2003)]. Journal of Applied Physics, 2020, 127, 116101.	1,1	1
169	Improved fine-grained object retrieval with Hard Global Softmin Loss objective. Signal Processing: Image Communication, 2022, 100, 116515.	1.8	1
170	Current sharing compensation control method for interleaved current source isolated bidirectional DC/DC converters. Journal of Power Electronics, $0, 1$.	0.9	1
171	Theoretical study of Ti:LiNbO3strip waveguides in the Mid-infrared. Journal of Modern Optics, 2003, 50, 2191-2199.	0.6	0
172	Study of Split Capacitor DAC Mismatch and Calibration in SAR-ADC. Journal of Circuits, Systems and Computers, 2017, 26, 1750003.	1.0	0
173	A Waveform-Subtraction Based Single-Stage Ripple-Suppression Converter Family for Multiple Waveform Generation. IEEE Transactions on Industrial Electronics, 2020, 67, 1890-1898.	5.2	0
174	One radish, One hole: Specific adversarial training for enhancing neural network's robustness. Peer-to-Peer Networking and Applications, 2021, 14, 2262-2274.	2.6	0