
Qassim Esmaeel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264490/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudomonas Lipopeptide-Mediated Biocontrol: Chemotaxonomy and Biological Activity. Molecules, 2022, 27, 372.	1.7	14
2	Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 2022, 10, 596.	1.6	223
3	Isolation and Identification of Lipopeptide-Producing Bacillus velezensis Strains from Wheat Phyllosphere with Antifungal Activity against the Wheat Pathogen Zymoseptoria tritici. Agronomy, 2022, 12, 95.	1.3	11
4	Analyses of Lysin-motif Receptor-like Kinase (LysM-RLK) Gene Family in Allotetraploid Brassica napus L. and Its Progenitor Species: An In Silico Study. Cells, 2022, 11, 37.	1.8	8
5	Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Frontiers in Microbiology, 2022, 13, .	1.5	29

6 Plant Beneficial Bacteria as Bioprotectants against Wheat and Barley Diseases. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10

7	A biological agent modulates the physiology of barley infected with Drechslera teres. Scientific Reports, 2021, 11, 8330.	1.6	9
8	Beneficial Microorganisms to Control the Gray Mold of Grapevine: From Screening to Mechanisms. Microorganisms, 2021, 9, 1386.	1.6	7
9	Gene expression and metabolite analysis in barley inoculated with net blotch fungus and plant growth-promoting rhizobacteria. Plant Physiology and Biochemistry, 2021, 168, 488-500.	2.8	5
10	Genotypic Variation of Nitrogen Use Efficiency and Amino Acid Metabolism in Barley. Frontiers in Plant Science, 2021, 12, 807798.	1.7	13
11	The mode of action of plant associated Burkholderia against grey mould disease in grapevine revealed through traits and genomic analyses. Scientific Reports, 2020, 10, 19393.	1.6	17
12	Induction of systemic resistance to <i>Agrobacterium tumefaciens</i> by endophytic bacteria in grapevine. Plant Pathology, 2020, 69, 827-837.	1.2	31
13	Screening of endophytic bacteria isolated from domesticated and wild growing grapevines as		
10	potential biological control agents against crown gall disease. BioControl, 2019, 64, 723-735.	0.9	15
13		0.9	15 6
	potential biological control agents against crown gall disease. BioControl, 2019, 64, 723-735. Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i>		
14	potential biological control agents against crown gall disease. BioControl, 2019, 64, 723-735. Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i> . Applied and Environmental Microbiology, 2019, 85, . Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World Journal of Microbiology and	1.4	6
14 15	 potential biological control agents against crown gall disease. BioControl, 2019, 64, 723-735. Biofilm-Constructing Variants of Paraburkholderia phytofirmans PsJN Outcompete the Wild-Type Form in Free-Living and Static Conditions but Not <i>In Planta</i>. Applied and Environmental Microbiology, 2019, 85, . Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.). World Journal of Microbiology and Biotechnology, 2019, 35, 40. Draft Genome Sequence of Burkholderia reimsis BE51, a Plant-Associated Bacterium Isolated from 	1.4	6 12

QASSIM ESMAEEL

#	Article	IF	CITATIONS
19	Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environmental Science and Pollution Research, 2018, 25, 29794-29807.	2.7	48
20	<i>Pseudomonas knackmussii</i> MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in <i>Arabidopsis thaliana</i> . Journal of Applied Microbiology, 2018, 125, 1836-1851.	1.4	26
21	Draft Genome Sequence of Plant Growth-Promoting Burkholderia sp. Strain BE12, Isolated from the Rhizosphere of Maize. Genome Announcements, 2018, 6, .	0.8	4
22	<i>Burkholderia</i> genome mining for nonribosomal peptideÂsynthetases reveals a great potential for novelÂsiderophores and lipopeptides synthesis. MicrobiologyOpen, 2016, 5, 512-526.	1.2	86
23	Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas. Applied Microbiology and Biotechnology, 2016, 100, 8453-8463.	1.7	13
24	Norine: A powerful resource for novel nonribosomal peptide discovery. Synthetic and Systems Biotechnology, 2016, 1, 89-94.	1.8	28