Marc Corbeels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustaining maize yields and soil carbon following land clearing in the forest–savannah transition zone of West Africa: Results from a 20-year experiment. Field Crops Research, 2022, 275, 108335.	5.1	8
2	A global overview of studies about land management, landâ€use change, and climate change effects on soil organic carbon. Global Change Biology, 2022, 28, 1690-1702.	9.5	69
3	A wellâ€established fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration. European Journal of Soil Science, 2022, 73, .	3.9	15
4	A global database of land management, land-use change and climate change effects on soil organic carbon. Scientific Data, 2022, 9, .	5.3	9
5	Limits of conservation agriculture to overcome low crop yields in sub-Saharan Africa. Nature Food, 2020, 1, 447-454.	14.0	52
6	Maize relay intercropping with fodder crops for small-scale farmers in central Brazil. Experimental Agriculture, 2020, 56, 561-573.	0.9	11
7	Modelling climate change impacts on maize yields under low nitrogen input conditions in subâ€Saharan Africa. Global Change Biology, 2020, 26, 5942-5964.	9.5	60
8	Participatory multicriteria assessment of maize cropping systems in the context of family farmers in the Brazilian Cerrado. International Journal of Agricultural Sustainability, 2020, 18, 410-426.	3.5	5
9	DOES SIZE MATTER? A CRITICAL REVIEW OF META-ANALYSIS IN AGRONOMY. Experimental Agriculture, 2019, 55, 200-229.	0.9	17
10	The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research, 2019, 188, 16-26.	5.6	96
11	Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research, 2017, 201, 133-145.	5.1	48
12	Agro-ecological functions of crop residues under conservation agriculture. A review. Agronomy for Sustainable Development, 2017, 37, 1.	5.3	129
13	Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. European Journal of Agronomy, 2016, 76, 41-53.	4.1	80
14	Beyond conservation agriculture. Frontiers in Plant Science, 2015, 6, 870.	3.6	269
15	How do various maize crop models vary in their responses to climate change factors?. Global Change Biology, 2014, 20, 2301-2320.	9.5	525
16	The farm-level economics of conservation agriculture for resource-poor farmers. Agriculture, Ecosystems and Environment, 2014, 187, 52-64.	5.3	178
17	Evaluation of climate adaptation options for Sudano-Sahelian cropping systems. Field Crops Research, 2014, 156, 63-75.	5.1	28
18	Understanding the impact and adoption of conservation agriculture in Africa: A multi-scale analysis. Agriculture, Ecosystems and Environment, 2014, 187, 155-170.	5.3	176

MARC CORBEELS

#	Article	IF	CITATIONS
19	Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 2013, 33, 113-130.	5.3	167
20	Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research, 2011, 124, 240-251.	5.1	58
21	A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agronomy for Sustainable Development, 2011, 31, 657-673.	5.3	340
22	Conservation agriculture and smallholder farming in Africa: The heretics' view. Field Crops Research, 2009, 114, 23-34.	5.1	1,021
23	Modelling crop residue mulching effects on water use and production of maize under semi-arid and humid tropical conditions. Agronomy for Sustainable Development, 2004, 24, 383-395.	0.8	121
24	Effect of Savanna windrow wood burning on the spatial variability of soil properties. Pesquisa Agropecuaria Tropical, 0, 51, .	1.0	0