Jason A Mills

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264399/publications.pdf

Version: 2024-02-01

		567281	580821
28	701	15	25 g-index
papers	citations	h-index	g-index
30	30	30	1457
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Generation of human control iPSC line CHOPi004-A from juvenile foreskin fibroblast cells. Stem Cell Research, 2020, 49, 102084.	0.7	2
2	Functional Cortical Axon Tracts Generated from Human Stem Cell-Derived Neurons. Tissue Engineering - Part A, 2019, 25, 736-745.	3.1	10
3	CRISPR Activation Enhances InÂVitro Potency of AAV Vectors Driven by Tissue-Specific Promoters. Molecular Therapy - Methods and Clinical Development, 2019, 13, 380-389.	4.1	35
4	Comparative AAV-eGFP Transgene Expression Using Vector Serotypes 1–9, 7m8, and 8b in Human Pluripotent Stem Cells, RPEs, and Human and Rat Cortical Neurons. Stem Cells International, 2019, 2019, 1-11.	2.5	24
5	A Mini Review: Moving iPSC-Derived Retinal Subtypes Forward for Clinical Applications for Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, 2019, 1185, 557-561.	1.6	2
6	Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Research, 2018, 27, 140-150.	0.7	37
7	NIPBL+/ \hat{a} ° haploinsufficiency reveals a constellation of transcriptome disruptions in the pluripotent and cardiac states. Scientific Reports, 2018, 8, 1056.	3.3	26
8	Amelioration of Neurosensory Structure and Function in Animal and Cellular Models of a Congenital Blindness. Molecular Therapy, 2018, 26, 1581-1593.	8.2	19
9	Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investigation, 2017, 4, 65-65.	3.0	13
10	Personalized models reveal mechanistic and therapeutic insights into CEP290-associated Leber congenital amaurosis. Stem Cell Investigation, 2016, 3, 65-65.	3.0	2
11	Generation of Hermansky–Pudlak Syndrome Type 1 (HPS1) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2016, 16, 233-235.	0.7	7
12	Generation of human control iPS cell line CHOPWT9 from healthy adult peripheral blood mononuclear cells. Stem Cell Research, 2016, 16, 14-16.	0.7	3
13	Retinas in a Dish Peek into Inherited Retinal Degeneration. Cell Stem Cell, 2016, 18, 688-689.	11.1	4
14	Generation of Hermansky Pudlak syndrome type 2 (HPS2) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2016, 16, 287-289.	0.7	2
15	Generation of poikiloderma with neutropenia (PN) induced pluripotent stem cells (iPSCs). Stem Cell Research, 2015, 15, 595-597.	0.7	2
16	Impaired Telomere Maintenance and Decreased Canonical WNT Signaling but Normal Ribosome Biogenesis in Induced Pluripotent Stem Cells from X-Linked Dyskeratosis Congenita Patients. PLoS ONE, 2015, 10, e0127414.	2.5	26
17	Dysregulation of the Transforming Growth Factor \hat{l}^2 Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia. PLoS ONE, 2015, 10, e0134878.	2.5	27
18	Emergence of a Stage-Dependent Human Liver Disease Signature with Directed Differentiation of Alpha-1 Antitrypsin-Deficient iPS Cells. Stem Cell Reports, 2015, 4, 873-885.	4.8	77

#	Article	IF	CITATIONS
19	OCT4 Coordinates with WNT Signaling to Pre-pattern Chromatin at the SOX17 Locus during Human ES Cell Differentiation into Definitive Endoderm. Stem Cell Reports, 2015, 5, 490-498.	4.8	29
20	The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells. Stem Cell Research, 2014, 12, 441-451.	0.7	49
21	Utilization of the AAVS1 safe harbor locus for hematopoietic specific transgene expression and gene knockdown in human ES cells. Stem Cell Research, 2014, 12, 630-637.	0.7	35
22	Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors. Journal of Visualized Experiments, 2014, , e52009.	0.3	10
23	High-level transgene expression in induced pluripotent stem cell–derived megakaryocytes: correction of Glanzmann thrombasthenia. Blood, 2014, 123, 753-757.	1.4	54
24	Hematopoietic Differentiation of Pluripotent Stem Cells in Culture. Methods in Molecular Biology, 2014, 1185, 181-194.	0.9	42
25	Dysregulation of the TGF \hat{l}^2 Pathway in Induced Pluripotent Stem Cells (iPSCs) Generated from Patients with Diamond Blackfan Anemia (DBA). Blood, 2014, 124, 254-254.	1.4	O
26	Clonal genetic and hematopoietic heterogeneity among human-induced pluripotent stem cell lines. Blood, 2013, 122, 2047-2051.	1.4	75
27	AAV-Mediated Gene Therapy for Choroideremia: Preclinical Studies in Personalized Models. PLoS ONE, 2013, 8, e61396.	2.5	71
28	Tissue-Specific Transgene Expression in Induced Pluripotent Stem (iPS) Cell-Derived Megakaryocytes: Correction of Glanzmann Thrombasthenia (GT). Blood, 2012, 120, 387-387.	1.4	0