## Robert H Hadfield

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264182/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                     | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Single-photon detectors for optical quantum information applications. Nature Photonics, 2009, 3, 696-705.                                                   | 31.4 | 1,302     |
| 2  | Superconducting nanowire single-photon detectors: physics and applications. Superconductor Science and Technology, 2012, 25, 063001.                        | 3.5  | 731       |
| 3  | Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors.<br>Nature Photonics, 2007, 1, 343-348.                    | 31.4 | 640       |
| 4  | Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength.<br>Nature, 2012, 491, 421-425.                                     | 27.8 | 423       |
| 5  | On-chip quantum interference between silicon photon-pair sources. Nature Photonics, 2014, 8, 104-108.                                                       | 31.4 | 407       |
| 6  | Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection.<br>Optics Express, 2013, 21, 8904.                           | 3.4  | 239       |
| 7  | Chip-based quantum key distribution. Nature Communications, 2017, 8, 13984.                                                                                 | 12.8 | 232       |
| 8  | Single photon source characterization with a superconducting single photon detector. Optics Express, 2005, 13, 10846.                                       | 3.4  | 146       |
| 9  | Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement. Optics Express, 2013, 21, 27826.                                    | 3.4  | 137       |
| 10 | Singlet oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. Optics Express, 2013, 21, 5005.                 | 3.4  | 125       |
| 11 | Quantum key distribution at 1550nm with twin superconducting single-photon detectors. Applied Physics Letters, 2006, 89, 241129.                            | 3.3  | 111       |
| 12 | Photon-sparse microscopy: visible light imaging using infrared illumination. Optica, 2015, 2, 1049.                                                         | 9.3  | 109       |
| 13 | Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica, 2016, 3, 407.                                                      | 9.3  | 108       |
| 14 | Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength. Optics Letters, 2007, 32, 2266.    | 3.3  | 105       |
| 15 | Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor.<br>Nature Photonics, 2007, 1, 585-588.                | 31.4 | 103       |
| 16 | Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Applied Physics Letters, 2008, 92, . | 3.3  | 101       |
| 17 | Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon. Applied Physics Letters, 2010, 96, .          | 3.3  | 99        |
| 18 | Gallium arsenide (GaAs) quantum photonic waveguide circuits. Optics Communications, 2014, 327, 49-55.                                                       | 2.1  | 98        |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fast Path and Polarization Manipulation of Telecom Wavelength Single Photons in Lithium Niobate<br>Waveguide Devices. Physical Review Letters, 2012, 108, 053601.                                        | 7.8 | 87        |
| 20 | Long-distance entanglement-based quantum key distribution over optical fiber. Optics Express, 2008, 16, 19118.                                                                                           | 3.4 | 82        |
| 21 | High-resolution single-mode fiber-optic distributed Raman sensor for absolute temperature<br>measurement using superconducting nanowire single-photon detectors. Applied Physics Letters, 2011,<br>99, . | 3.3 | 82        |
| 22 | Demonstration of a Quantum Controlled-NOT Gate in the Telecommunications Band. Physical Review Letters, 2008, 100, 133603.                                                                               | 7.8 | 77        |
| 23 | Space-quest, experiments with quantum entanglement in space. Europhysics News, 2009, 40, 26-29.                                                                                                          | 0.3 | 77        |
| 24 | Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector. Applied Physics Letters, 2006, 89, 031109.                                                    | 3.3 | 76        |
| 25 | High-extinction ratio integrated photonic filters for silicon quantum photonics. Optics Letters, 2017, 42, 815.                                                                                          | 3.3 | 72        |
| 26 | Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits.<br>New Journal of Physics, 2012, 14, 045003.                                                           | 2.9 | 71        |
| 27 | Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths. Optics Express, 2011, 19, 24434.                                                                                   | 3.4 | 68        |
| 28 | Fabrication of nanoscale heterostructure devices with a focused ion beam microscope.<br>Nanotechnology, 2003, 14, 630-632.                                                                               | 2.6 | 63        |
| 29 | Practical long-distance quantum key distribution system using decoy levels. New Journal of Physics, 2009, 11, 045009.                                                                                    | 2.9 | 63        |
| 30 | Generation of correlated photon pairs in a chalcogenide As2S3 waveguide. Applied Physics Letters, 2011, 98, .                                                                                            | 3.3 | 62        |
| 31 | Photon counting LIDAR at 23µm wavelength with superconducting nanowires. Optics Express, 2019, 27,<br>38147.                                                                                             | 3.4 | 62        |
| 32 | Quantum detector tomography of a time-multiplexed superconducting nanowire single-photon detector at telecom wavelengths. Optics Express, 2013, 21, 893.                                                 | 3.4 | 58        |
| 33 | Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. Optics Express, 2012, 20, 27510.                                                                       | 3.4 | 57        |
| 34 | Solid immersion lens applications for nanophotonic devices. Journal of Nanophotonics, 2008, 2, 021854.                                                                                                   | 1.0 | 55        |
| 35 | Position controlled nanowires for infrared single photon emission. Applied Physics Letters, 2010, 97,                                                                                                    | 3.3 | 55        |
| 36 | Single-photon detection using a quantum dot optically gated field-effect transistor with high internal quantum efficiency. Applied Physics Letters, 2006, 89, 253505.                                    | 3.3 | 52        |

Robert H Hadfield

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Low-frequency phase locking in high-inductance superconducting nanowires. Applied Physics Letters, 2005, 87, 203505.                                          | 3.3  | 48        |
| 38 | Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform. Optics Express, 2010, 18, 2601.             | 3.4  | 45        |
| 39 | Characterisation of amorphous molybdenum silicide (MoSi) superconducting thin films and nanowires. Superconductor Science and Technology, 2017, 30, 084010.   | 3.5  | 45        |
| 40 | Operating quantum waveguide circuits with superconducting single-photon detectors. Applied Physics Letters, 2010, 96, 211101.                                 | 3.3  | 42        |
| 41 | Two-photon quantum interference and entanglement at 2.1 μm. Science Advances, 2020, 6, eaay5195.                                                              | 10.3 | 42        |
| 42 | Gigahertz bandwidth electrical control over a dark exciton-based memory bit in a single quantum dot.<br>Applied Physics Letters, 2009, 94, .                  | 3.3  | 41        |
| 43 | Analysis of a distributed fiber-optic temperature sensor using single-photon detectors. Optics<br>Express, 2012, 20, 3456.                                    | 3.4  | 41        |
| 44 | Optical properties of refractory metal based thin films. Optical Materials Express, 2018, 8, 2072.                                                            | 3.0  | 41        |
| 45 | Optimised quantum hacking of superconducting nanowire single-photon detectors. Optics Express, 2014, 22, 6734.                                                | 3.4  | 39        |
| 46 | A superconducting nanowire single photon detector on lithium niobate. Nanotechnology, 2012, 23, 505201.                                                       | 2.6  | 38        |
| 47 | Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors. Optics Express, 2007, 15, 1322.                      | 3.4  | 37        |
| 48 | Space QUEST mission proposal: experimentally testing decoherence due to gravity. New Journal of Physics, 2018, 20, 063016.                                    | 2.9  | 36        |
| 49 | Spatial dependence of output pulse delay in a niobium nitride nanowire superconducting single-photon detector. Applied Physics Letters, 2011, 98, 201116.     | 3.3  | 34        |
| 50 | Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair. Nature<br>Communications, 2013, 4, 2228.                                 | 12.8 | 31        |
| 51 | Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits. Nature Communications, 2015, 6, 8955.        | 12.8 | 31        |
| 52 | Submicrometer photoresponse mapping of nanowire superconducting single-photon detectors.<br>Applied Physics Letters, 2007, 91, .                              | 3.3  | 29        |
| 53 | Nano-optical single-photon response mapping of waveguide integrated molybdenum silicide (MoSi)<br>superconducting nanowires. Optics Express, 2016, 24, 13931. | 3.4  | 29        |
| 54 | A miniaturized 4 K platform for superconducting infrared photon counting detectors.<br>Superconductor Science and Technology, 2017, 30, 11LT01.               | 3.5  | 29        |

| #  | Article                                                                                                                                                                                  | IF      | CITATIONS     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------|
| 55 | Silicon photonic processor of two-qubit entangling quantum logic. Journal of Optics (United) Tj ETQq1 1 0.7843                                                                           | 14_rgBT | /Overlock 10T |
| 56 | Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors. Journal of Applied Physics, 2007, 101, 103104.                               | 2.5     | 28            |
| 57 | Nanoantenna Enhancement for Telecom-Wavelength Superconducting Single Photon Detectors. Nano<br>Letters, 2015, 15, 819-822.                                                              | 9.1     | 28            |
| 58 | Niobium diselenide superconducting photodetectors. Applied Physics Letters, 2019, 114, .                                                                                                 | 3.3     | 28            |
| 59 | Correlated photon-pair generation in a periodically poled MgO doped stoichiometric lithium tantalate reverse proton exchanged waveguide. Applied Physics Letters, 2011, 99, .            | 3.3     | 27            |
| 60 | Analysis of detector performance in a gigahertz clock rate quantum key distribution system. New<br>Journal of Physics, 2011, 13, 075008.                                                 | 2.9     | 27            |
| 61 | A Comparison of Singlet Oxygen Explicit Dosimetry (SOED) and Singlet Oxygen Luminescence<br>Dosimetry (SOLD) for Photofrin-Mediated Photodynamic Therapy. Cancers, 2016, 8, 109.         | 3.7     | 23            |
| 62 | A compact fiberâ€optic probeâ€based singlet oxygen luminescence detection system. Journal of<br>Biophotonics, 2017, 10, 320-326.                                                         | 2.3     | 22            |
| 63 | Superconducting nanowire single-photon detectors with non-periodic dielectric multilayers.<br>Scientific Reports, 2016, 6, 35240.                                                        | 3.3     | 20            |
| 64 | Strong magnon–photon coupling with chip-integrated YIG in the zero-temperature limit. Applied Physics Letters, 2021, 119, .                                                              | 3.3     | 20            |
| 65 | Superconducting photon detectors. Contemporary Physics, 2021, 62, 69-91.                                                                                                                 | 1.8     | 20            |
| 66 | Heralding of telecommunication photon pairs with a superconducting single photon detector.<br>Applied Physics Letters, 2006, 89, 031112.                                                 | 3.3     | 19            |
| 67 | Resonance fluorescence from a telecom-wavelength quantum dot. Applied Physics Letters, 2016, 109, .                                                                                      | 3.3     | 17            |
| 68 | Superconducting coincidence photon detector with short timing jitter. Applied Physics Letters, 2018, 112, .                                                                              | 3.3     | 17            |
| 69 | Operational Analysis of a Quantum Dot Optically Gated Field-Effect Transistor as a Single-Photon<br>Detector. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 967-977. | 2.9     | 14            |
| 70 | Investigations of afterpulsing and detection efficiency recovery in superconducting nanowire single-photon detectors. Journal of Applied Physics, 2013, 113, 213102.                     | 2.5     | 14            |
| 71 | Current distribution in a parallel configuration superconducting strip-line detector. Applied Physics<br>Letters, 2013, 103, .                                                           | 3.3     | 14            |
| 72 | Nano-optical observation of cascade switching in a parallel superconducting nanowire single photon detector. Applied Physics Letters, 2014, 104, .                                       | 3.3     | 12            |

Robert H Hadfield

| #  | Article                                                                                                                                                                                       | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Amorphous molybdenum silicon superconducting thin films. AIP Advances, 2015, 5, .                                                                                                             | 1.3  | 12        |
| 74 | Infrared single-photon sensitivity in atomic layer deposited superconducting nanowires. Applied Physics Letters, 2021, 118, 191106.                                                           | 3.3  | 12        |
| 75 | Nanoscale SNS junction fabrication in superconductor-normal metal bilayers. IEEE Transactions on Applied Superconductivity, 2001, 11, 1126-1129.                                              | 1.7  | 11        |
| 76 | Capacitance as a probe of high angle grain boundary transport in oxide superconductors. IEEE<br>Transactions on Applied Superconductivity, 2001, 11, 418-421.                                 | 1.7  | 11        |
| 77 | A superconducting antenna-coupled microbolometer for THz applications. , 2004, , .                                                                                                            |      | 10        |
| 78 | Quantum Dot Single Photon Sources Studied with Superconducting Single Photon Detectors. IEEE<br>Journal of Selected Topics in Quantum Electronics, 2006, 12, 1255-1268.                       | 2.9  | 9         |
| 79 | Nano-optical photoresponse mapping of superconducting nanowires with enhanced near infrared absorption. Superconductor Science and Technology, 2018, 31, 125012.                              | 3.5  | 9         |
| 80 | Designing high electron mobility transistor heterostructures with quantum dots for efficient,<br>number-resolving photon detection. Journal of Vacuum Science & Technology B, 2008, 26, 1174. | 1.3  | 8         |
| 81 | Commentary: New developments in single photon detection in the short wavelength infrared regime.<br>Journal of Nanophotonics, 2010, 4, 040301.                                                | 1.0  | 8         |
| 82 | Experimental evidence of photoinduced vortex crossing in current carrying superconducting strips.<br>Physical Review B, 2015, 92, .                                                           | 3.2  | 8         |
| 83 | Enhanced Optics for Time-Resolved Singlet Oxygen Luminescence Detection. IEEE Journal of Selected<br>Topics in Quantum Electronics, 2019, 25, 1-7.                                            | 2.9  | 8         |
| 84 | Superfast photon counting. Nature Photonics, 2020, 14, 201-202.                                                                                                                               | 31.4 | 8         |
| 85 | Corbino geometry Josephson junction. Physical Review B, 2003, 67, .                                                                                                                           | 3.2  | 7         |
| 86 | Josephson junctions with hysteretic current voltage characteristics at high temperatures. IEEE<br>Transactions on Applied Superconductivity, 1999, 9, 3468-3471.                              | 1.7  | 6         |
| 87 | Infrared wavelength-dependent optical characterization of NbN nanowire superconducting single-photon detectors. Journal of Modern Optics, 2009, 56, 358-363.                                  | 1.3  | 6         |
| 88 | Analysis of Excitability in Resonant Tunneling Diode-Photodetectors. Nanomaterials, 2021, 11, 1590.                                                                                           | 4.1  | 6         |
| 89 | Parallel superconducting strip-line detectors: reset behaviour in the single-strip switch regime.<br>Superconductor Science and Technology, 2014, 27, 044029.                                 | 3.5  | 6         |
| 90 | Nanofabricated SNS junction series arrays in superconductor-normal metal bilayers. Superconductor Science and Technology, 2001, 14, 1086-1089.                                                | 3.5  | 5         |

| #   | Article                                                                                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Asymmetry modulated SQUIDs made by direct focused ion beam milling. Physica C: Superconductivity and Its Applications, 2002, 368, 241-245.                                                                                                                                                                                                                            | 1.2 | 4         |
| 92  | Nanoscale superconductor–normal metal–superconductor junctions fabricated by focused ion beam.<br>Physica C: Superconductivity and Its Applications, 2002, 372-376, 14-17.                                                                                                                                                                                            | 1.2 | 4         |
| 93  | Fast electro-optics of a single self-assembled quantum dot in a charge-tunable device. Journal of Applied Physics, 2012, 111, 043112.                                                                                                                                                                                                                                 | 2.5 | 4         |
| 94  | A feasibility study of singlet oxygen explicit dosmietry (SOED) of PDT by intercomparison with a singlet oxygen luminescence dosimetry (SOLD) system. , 2016, 9694, .                                                                                                                                                                                                 |     | 4         |
| 95  | Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging. Journal of Low Temperature Physics, 2018, 193, 196-202.                                                                                                                                                                                      | 1.4 | 4         |
| 96  | A compact 4 K cooling system for superconducting nanowire single photon detectors. IOP<br>Conference Series: Materials Science and Engineering, 2019, 502, 012193.                                                                                                                                                                                                    | 0.6 | 4         |
| 97  | Long Distance Quantum Key Distribution in Optical Fiber. , 2008, , .                                                                                                                                                                                                                                                                                                  |     | 3         |
| 98  | Biexciton cascade in telecommunication wavelength quantum dots. Journal of Physics: Conference<br>Series, 2010, 210, 012036.                                                                                                                                                                                                                                          | 0.4 | 3         |
| 99  | A tunable fiber-coupled optical cavity for agile enhancement of detector absorption. Journal of Applied Physics, 2016, 120, .                                                                                                                                                                                                                                         | 2.5 | 3         |
| 100 | Integrated Joule switches for the control of current dynamics in parallel superconducting strips.<br>Superconductor Science and Technology, 2018, 31, 06LT01.                                                                                                                                                                                                         | 3.5 | 3         |
| 101 | Near-Maximal Two-Photon Entanglement for Optical Quantum Communication at <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"<br/>overflow="scroll"&gt;<mml:mn>2.1</mml:mn><mml:mspace width="0.2em"></mml:mspace><mml:mi>μ&lt;</mml:mi><mml:mi<br>mathvariant="normal"&gt;m. Physical Review Applied, 2021, 16, .</mml:mi<br></mml:math<br> | 3.8 | 3         |
| 102 | Time-correlated single-photon counting with superconducting single-photon detectors. , 2006, , .                                                                                                                                                                                                                                                                      |     | 2         |
| 103 | Publisher's Note: Demonstration of a Quantum Controlled-NOT Gate in the Telecommunications Band<br>[Phys. Rev. Lett.100, 133603 (2008)]. Physical Review Letters, 2008, 100, .                                                                                                                                                                                        | 7.8 | 2         |
| 104 | High Spatial Resolution Distributed Fiber Sensor Using Raman Scattering in Single-Mode Fiber. , 2010, , .                                                                                                                                                                                                                                                             |     | 2         |
| 105 | Quantum interference in silicon waveguide circuits. , 2011, , .                                                                                                                                                                                                                                                                                                       |     | 2         |
| 106 | Depth imaging at kilometer range using time-correlated single-photon counting at wavelengths of 850 nm and 1560 nm. , 2012, , .                                                                                                                                                                                                                                       |     | 2         |
| 107 | Superconducting Nanowire Single-Photon Detectors for Quantum Communication Applications.<br>Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications<br>Engineering, 2010, , 225-232.                                                                                                                                          | 0.3 | 2         |
| 108 | Single photon detector comparison in a quantum key distribution test. , 2006, , .                                                                                                                                                                                                                                                                                     |     | 1         |

7

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nano-optical studies of superconducting nanowire single-photon detectors. Proceedings of SPIE, 2009, , .                                                                                                      | 0.8 | 1         |
| 110 | Kilometer range depth imaging using time-correlated single-photon counting. , 2011, , .                                                                                                                       |     | 1         |
| 111 | Chip-to-chip quantum entanglement distribution. , 2015, , .                                                                                                                                                   |     | 1         |
| 112 | Timing Jitter Characterization of the SFQ Coincidence Circuit by Optically Time-Controlled Signals From SSPDs. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-4.                                 | 1.7 | 1         |
| 113 | 2.3 $ m ^{14}$ m wavelength single photon LIDAR with superconducting nanowire detectors. , 2019, , .                                                                                                          |     | 1         |
| 114 | Singlet Oxygen luminescence detection with a fiber-coupled superconducting nanowire single-photon detector. , 2013, , .                                                                                       |     | 1         |
| 115 | Passive High-Extinction Integrated Photonic Filters for Silicon Quantum Photonics. , 2016, , .                                                                                                                |     | 1         |
| 116 | Long-range depth imaging with 13ps temporal resolution using a superconducting nanowire singlephoton detector. , 2020, , .                                                                                    |     | 1         |
| 117 | Antenna Coupled Niobium Bolometers for 10 <tex>\$murm m\$</tex> Wavelength Radiation<br>Detection. IEEE Transactions on Applied Superconductivity, 2005, 15, 541-544.                                         | 1.7 | Ο         |
| 118 | A superconducting nanowire single-photon detector system for single-photon source characterization. , 2010, , .                                                                                               |     | 0         |
| 119 | Nano-Optical Studies of Superconducting Nanowire Single Photon Detectors. Lecture Notes of the<br>Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2010, ,<br>158-166. | 0.3 | Ο         |
| 120 | An Analysis of Single-Photon Detectors in an Environmentally Robust GigaHertz Clock Rate Quantum<br>Key Distribution System. , 2011, , .                                                                      |     | 0         |
| 121 | Characterization of high-purity, pulsed squeezed light at telecom wavelengths from pp-KTP for quantum information applications. , 2011, , .                                                                   |     | Ο         |
| 122 | Single-photon detection in time-of-flight-depth imaging and quantum key distribution. Proceedings of SPIE, 2011, , .                                                                                          | 0.8 | 0         |
| 123 | Single-photon counting imaging systems. , 2011, , .                                                                                                                                                           |     | Ο         |
| 124 | Silicon Quantum Photonic Sources and Circuits. , 2012, , .                                                                                                                                                    |     | 0         |
| 125 | Single spins in semiconductor quantum dot microcavities. , 2013, , .                                                                                                                                          |     | 0         |
| 126 | Infrared photon counting with superconducting nanowire single-photon detectors. , 2013, , .                                                                                                                   |     | 0         |

Infrared photon counting with superconducting nanowire single-photon detectors. , 2013, , . 126

| #   | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Singlet oxygen luminescence detection with a fibre-coupled superconducting nanowire single-photon detector. , 2013, , .                                                                                     |     | 0         |
| 128 | Kilometre-range, high resolution depth imaging using 1560 nm wavelength single-photon detection. , 2013, , .                                                                                                |     | 0         |
| 129 | Monolithic generation and manipulation of nondegenerate photon pairs within a silicon-on-insulator quantum photonic circuit. , 2013, , .                                                                    |     | 0         |
| 130 | Photon pair generation and manipulation in an integrated silicon chip. , 2013, , .                                                                                                                          |     | 0         |
| 131 | Ultrafast optical control of individual electron and hole spin qubits: entanglement between a single<br>quantum dot electron spin and a downconverted 1560-nm single photon. Proceedings of SPIE, 2013, , . | 0.8 | 0         |
| 132 | Integrated Photonic Devices for Quantum Key Distribution. , 2015, , .                                                                                                                                       |     | 0         |
| 133 | Photon-sparse microscopy: Trans-wavelength ghost imaging. Proceedings of SPIE, 2016, , .                                                                                                                    | 0.8 | Ο         |
| 134 | Integration of Molybdenum Silicide Superconducting Nanowires with Quantum Photonic Circuits for On-Chip Single Photon Detection. , 2017, , .                                                                |     | 0         |
| 135 | Modelling of a Two-Signal SFQ Detection Scheme for the Readout of Superconducting Nanowire Single Photon Detectors. , 2017, , .                                                                             |     | 0         |
| 136 | Photon Pair Generation at 2.080μm by Down-Conversion. , 2019, , .                                                                                                                                           |     | 0         |
| 137 | Generation and characterization of two-photon entanglement in the mid infrared. , 2021, , .                                                                                                                 |     | 0         |
| 138 | Ultrafast downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel. , 2013, , .                                                                                     |     | 0         |
| 139 | Background-free Quantum Frequency Downconversion for Two-photon Interference of<br>Heterogeneous Photon Sources. , 2015, , .                                                                                |     | 0         |
| 140 | Entanglement distribution between integrated silicon photonic chips. , 2015, , .                                                                                                                            |     | 0         |
| 141 | A Compact Fiber Optic Based Singlet Oxygen Luminescence Sensor. , 2016, , .                                                                                                                                 |     | 0         |
| 142 | Comparison of Photon Pair Generation in a-Si:H and c-Si Microring Resonators. , 2016, , .                                                                                                                   |     | 0         |
| 143 | A Compact Fiber Optic Based Singlet Oxygen Luminescence Sensor. , 2016, , .                                                                                                                                 |     | 0         |
| 144 | Near-maximal Polarization Entanglement for Quantum Communications at 2.1 µm. , 2021, , .                                                                                                                    |     | 0         |

| #   | Article                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Measurement of Near-maximal Polarization Entanglement at 2.1 $\hat{I}$ $/4$ m. , 2021, , .                        |     | 0         |
| 146 | Viewpoint: Compact cryogenics for superconducting photon detectors. Superconductor Science and Technology, 0, , . | 3.5 | 0         |