
Claudio Gerbaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6264008/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Improving efficiency and stability of perovskite solar cells with photocurable fluoropolymers. Science, 2016, 354, 203-206.	6.0	748
2	Aqueous dye-sensitized solar cells. Chemical Society Reviews, 2015, 44, 3431-3473.	18.7	389
3	Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Scientific Reports, 2016, 6, 19892.	1.6	300
4	Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 2020, 22, 7168-7218.	4.6	272
5	Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature. ACS Energy Letters, 2016, 1, 678-682.	8.8	270
6	Cellulose-based Li-ion batteries: a review. Cellulose, 2013, 20, 1523-1545.	2.4	262
7	Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Applied Materials & Interfaces, 2016, 8, 10350-10359.	4.0	251
8	Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid. Journal of Power Sources, 2010, 195, 559-566.	4.0	225
9	Hydrothermal synthesis of high surface LiFePO4 powders as cathode for Li-ion cells. Journal of Power Sources, 2006, 160, 516-522.	4.0	224
10	Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2014, 2, 9948-9954.	5.2	183
11	Caesium for Perovskite Solar Cells: An Overview. Chemistry - A European Journal, 2018, 24, 12183-12205.	1.7	138
12	A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. Journal of Power Sources, 2017, 359, 311-321.	4.0	134
13	Cellulose-based novel hybrid polymer electrolytes for green and efficient Na-ion batteries. Electrochimica Acta, 2015, 174, 185-190.	2.6	132
14	Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. Journal of Power Sources, 2017, 364, 191-199.	4.0	130
15	Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. Journal of Materials Chemistry, 2010, 20, 7344.	6.7	119
16	Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochimica Acta, 2018, 285, 355-364.	2.6	118
17	PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, "one pot―preparation. Journal of Energy Storage, 2019, 26, 100947.	3.9	117
18	Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. Journal of Power Sources, 2011, 196, 10280-10288.	4.0	109

#	Article	lF	CITATIONS
19	A New Design Paradigm for Smart Windows: Photocurable Polymers for Quasiâ€Solid Photoelectrochromic Devices with Excellent Longâ€Term Stability under Real Outdoor Operating Conditions. Advanced Functional Materials, 2016, 26, 1127-1137.	7.8	109
20	Hydrogel Electrolytes Based on Xanthan Gum: Green Route towards Stable Dye-Sensitized Solar Cells. Nanomaterials, 2020, 10, 1585.	1.9	103
21	Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Materials, 2016, 3, 69-76.	9.5	102
22	Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. Journal of Power Sources, 2019, 412, 398-407.	4.0	100
23	Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries. Journal of Power Sources, 2017, 365, 293-302.	4.0	99
24	Thermally cured semi-interpenetrating electrolyte networks (s-IPN) for safe and aging-resistant secondary lithium polymer batteries. Journal of Power Sources, 2016, 306, 258-267.	4.0	98
25	Approaching truly sustainable solar cells by the use of water and cellulose derivatives. Green Chemistry, 2017, 19, 1043-1051.	4.6	98
26	Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies, 2016, 9, 384.	1.6	97
27	UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries. ACS Applied Energy Materials, 2019, 2, 1600-1607.	2.5	97
28	Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries. Electrochimica Acta, 2013, 90, 179-185.	2.6	95
29	Zinc oxide nanostructures by chemical vapour deposition as anodes for Li-ion batteries. Journal of Alloys and Compounds, 2015, 640, 321-326.	2.8	93
30	Understanding the Effect of UV-Induced Cross-Linking on the Physicochemical Properties of Highly Performing PEO/LiTFSI-Based Polymer Electrolytes. Langmuir, 2019, 35, 8210-8219.	1.6	92
31	A water-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chemical Science, 2020, 11, 1485-1493.	3.7	91
32	Unveiling iodine-based electrolytes chemistry in aqueous dye-sensitized solar cells. Chemical Science, 2016, 7, 4880-4890.	3.7	90
33	Unveiling the controversial mechanism of reversible Na storage in TiO2 nanotube arrays: Amorphous versus anatase TiO2. Nano Research, 2017, 10, 2891-2903.	5.8	90
34	Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Solar Energy, 2018, 163, 251-255.	2.9	90
35	Paper-based quasi-solid dye-sensitized solar cells. Electrochimica Acta, 2017, 237, 87-93.	2.6	89
36	Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures. Energy, 2014, 65, 639-646.	4.5	87

3

#	Article	IF	CITATIONS
37	Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy, 2019, 166, 789-795.	4.5	87
38	UV-cured polymer electrolytes encompassing hydrophobic room temperature ionic liquid for lithium batteries. Journal of Power Sources, 2010, 195, 1706-1713.	4.0	86
39	Single Ion Conducting Polymer Electrolytes Based On Versatile Polyurethanes. Electrochimica Acta, 2017, 241, 526-534.	2.6	86
40	Combined Structural, Chemometric, and Electrochemical Investigation of Vertically Aligned TiO ₂ Nanotubes for Na-ion Batteries. ACS Omega, 2018, 3, 8440-8450.	1.6	86
41	UV-cured methacrylic membranes as novel gel–polymer electrolyte for Li-ion batteries. Journal of Power Sources, 2008, 178, 751-757.	4.0	85
42	Photopolymer Electrolytes for Sustainable, Upscalable, Safe, and Ambientâ€Temperature Sodiumâ€Ion Secondary Batteries. ChemSusChem, 2015, 8, 3668-3676.	3.6	85
43	Luminescent Downshifting by Photoâ€Induced Solâ€Gel Hybrid Coatings: Accessing Multifunctionality on Flexible Organic Photovoltaics via Ambient Temperature Material Processing. Advanced Electronic Materials, 2016, 2, 1600288.	2.6	85
44	Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach. RSC Advances, 2013, 3, 15993.	1.7	82
45	A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent efficiency and durability. Physical Chemistry Chemical Physics, 2013, 15, 3706.	1.3	82
46	Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochimica Acta, 2019, 302, 31-37.	2.6	81
47	A simple route toward next-gen green energy storage concept by nanofibres-based self-supporting electrodes and a solid polymeric design. Carbon, 2016, 107, 811-822.	5.4	80
48	Aqueous processing of cellulose based paper-anodes for flexible Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 3227.	6.7	78
49	Interfacial Effects in Solid–Liquid Electrolytes for Improved Stability and Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 37797-37803.	4.0	76
50	First-principles study of Na insertion at TiO ₂ anatase surfaces: new hints for Na-ion battery design. Nanoscale Advances, 2020, 2, 2745-2751.	2.2	75
51	Newly Elaborated Multipurpose Polymer Electrolyte Encompassing RTILs for Smart Energy-Efficient Devices. ACS Applied Materials & Interfaces, 2015, 7, 12961-12971.	4.0	74
52	Patterning dye-sensitized solar cell photoanodes through a polymeric approach: A perspective. Materials Science in Semiconductor Processing, 2018, 73, 92-98.	1.9	74
53	Direct light-induced polymerization of cobalt-based redox shuttles: an ultrafast way towards stable dye-sensitized solar cells. Chemical Communications, 2015, 51, 16308-16311.	2.2	73
54	As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance. Electrochimica Acta, 2015, 151, 222-229.	2.6	73

#	Article	IF	CITATIONS
55	Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chemical Engineering Journal, 2020, 382, 122934.	6.6	73
56	Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO ₂ Paste. ChemSusChem, 2020, 13, 6562-6573.	3.6	71
57	UV-curable siloxane-acrylate gel-copolymer electrolytes for lithium-based battery applications. Electrochimica Acta, 2010, 55, 1460-1467.	2.6	70
58	Sprayâ€Dried Mesoporous Mixed Cuâ€Ni Oxide@Graphene Nanocomposite Microspheres for High Power and Durable Liâ€Ion Battery Anodes. Advanced Energy Materials, 2018, 8, 1802438.	10.2	70
59	Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. Reactive and Functional Polymers, 2011, 71, 409-416.	2.0	68
60	Structure–Performance Correlation of Nanocelluloseâ€Based Polymer Electrolytes for Efficient Quasiâ€solid DSSCs. ChemElectroChem, 2014, 1, 1350-1358.	1.7	68
61	Photoanode/Electrolyte Interface Stability in Aqueous Dye ensitized Solar Cells. Energy Technology, 2017, 5, 300-311.	1.8	68
62	Flexible cellulose/LiFePO4 paper-cathodes: toward eco-friendly all-paper Li-ion batteries. Cellulose, 2013, 20, 571-582.	2.4	67
63	Tuning optical and electronic properties in novel carbazole photosensitizers for p-type dye-sensitized solar cells. Electrochimica Acta, 2018, 292, 805-816.	2.6	67
64	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€Solid Truly Aqueous Dyeâ€Sensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2000823.	3.1	65
65	Large Conductance Modulation of Gold Thin Films by Huge Charge Injection via Electrochemical Gating. Physical Review Letters, 2012, 108, 066807.	2.9	63
66	Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction. Electrochimica Acta, 2013, 94, 80-91.	2.6	61
67	Pyridineâ€based PBI Composite Membranes for PEMFCs. Fuel Cells, 2009, 9, 349-355.	1.5	59
68	PBI Composite and Nanocomposite Membranes for PEMFCs: The Role of the Filler. Fuel Cells, 2009, 9, 231-236.	1.5	56
69	Photoelectrochromic devices with cobalt redox electrolytes. Materials Today Energy, 2020, 15, 100365.	2.5	50
70	Polyethylene oxide electrolyte membranes with pyrrolidinium-based ionic liquids. Electrochimica Acta, 2010, 55, 5478-5484.	2.6	49
71	Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries. Journal of Power Sources, 2013, 228, 294-299.	4.0	49
72	Solidâ€State Post Li Metal Ion Batteries: A Sustainable Forthcoming Reality?. Advanced Energy Materials, 2021. 11	10.2	49

#	Article	IF	CITATIONS
73	Optimisation of some parameters for the preparation of nanostructured LifePO4/C cathode. lonics, 2009, 15, 19-26.	1.2	48
74	Vertically aligned TiO2 nanotube array for high rate Li-based micro-battery anodes with improved durability. Electrochimica Acta, 2013, 102, 233-239.	2.6	45
75	Mesoporous TiO2 nanocrystals produced by a fast hydrolytic process as high-rate long-lasting Li-ion battery anodes. Acta Materialia, 2014, 69, 60-67.	3.8	45
76	Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochimica Acta, 2011, 57, 104-111.	2.6	43
77	Highly ionic conducting methacrylic-based gel-polymer electrolytes by UV-curing technique. Journal of Applied Electrochemistry, 2009, 39, 2199-2207.	1.5	41
78	UV-cured polymer electrolyte membranes for Li-cells: Improved mechanical properties by a novel cellulose reinforcement. Electrochemistry Communications, 2009, 11, 1796-1798.	2.3	40
79	Aqueous processing of paper separators by filtration dewatering: towards Li-ion paper batteries. Journal of Materials Chemistry A, 2015, 3, 14894-14901.	5.2	40
80	Highly Porous Paper Loading with Microfibrillated Cellulose by Spray Coating on Wet Substrates. Industrial & Engineering Chemistry Research, 2014, 53, 10982-10989.	1.8	39
81	Surfactant-assisted sol gel preparation of high-surface area mesoporous TiO2 nanocrystalline Li-ion battery anodes. Journal of Alloys and Compounds, 2014, 594, 114-121.	2.8	39
82	Unique Carbonate-Based Single Ion Conducting Block Copolymers Enabling High-Voltage, All-Solid-State Lithium Metal Batteries. Macromolecules, 2021, 54, 6911-6924.	2.2	39
83	Mesoporous carbons as low temperature fuel cell platinum catalyst supports. Journal of Applied Electrochemistry, 2008, 38, 1019-1027.	1.5	38
84	Managing transport properties in composite electrodes/electrolytes for all-solid-state lithium-based batteries. Molecular Systems Design and Engineering, 2019, 4, 850-871.	1.7	38
85	FePO4 nanoparticles supported on mesoporous SBA-15: Interesting cathode materials for Li-ion cells. Journal of Power Sources, 2007, 174, 501-507.	4.0	36
86	Cycling behaviour of sponge-like nanostructured ZnO as thin-film Li-ion battery anodes. Journal of Alloys and Compounds, 2014, 615, S454-S458.	2.8	35
87	Design of ionic liquid like monomers towards easy-accessible single-ion conducting polymer electrolytes. European Polymer Journal, 2018, 107, 218-228.	2.6	35
88	Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries. Electrochimica Acta, 2017, 235, 143-149.	2.6	34
89	Smart synthesis of hollow core mesoporous shell carbons (HCMSC) as effective catalyst supports for methanol oxidation and oxygen reduction reactions. Journal of Solid State Electrochemistry, 2012, 16, 3087-3096.	1.2	33
90	Graphene and Lithium-Based Battery Electrodes: A Review of Recent Literature. Energies, 2020, 13, 4867.	1.6	33

#	Article	IF	CITATIONS
91	Unveiling Oxygen Redox Activity in P2-Type Na _{<i>x</i>} Ni _{0.25} Mn _{0.68} O ₂ High-Energy Cathode for Na-Ion Batteries. ACS Energy Letters, 2021, 6, 2470-2480.	8.8	32
92	New electrolyte membranes for Li-based cells: Methacrylic polymers encompassing pyrrolidinium-based ionic liquid by single step photo-polymerisation. Journal of Membrane Science, 2012, 423-424, 459-467.	4.1	31
93	Ordered Mesoporous Carbons as Catalyst Support for PEM Fuel Cells. Fuel Cells, 2009, 9, 197-200.	1.5	30
94	All-solid-state lithium-based polymer cells for high-temperature applications. Ionics, 2010, 16, 777-786.	1.2	30
95	Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochimica Acta, 2012, 86, 323-329.	2.6	29
96	Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chemical Engineering Journal, 2014, 243, 372-379.	6.6	29
97	Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. Molecular Catalysis, 2020, 496, 111181.	1.0	29
98	MgAl2SiO6-incorporated poly(ethylene oxide)-based electrolytes for all-solid-state lithium batteries. Ionics, 2014, 20, 151-156.	1.2	28
99	Nanoscale microfibrillated cellulose reinforced truly-solid polymer electrolytes for flexible, safe and sustainable lithium-based batteries. Cellulose, 2013, 20, 2439-2449.	2.4	27
100	High-rate V2O5-based Li-ion thin film polymer cell with outstanding long-term cyclability. Nano Energy, 2013, 2, 1279-1286.	8.2	27
101	Temperature Dependence of Electric Transport in Few-layer Graphene under Large Charge Doping Induced by Electrochemical Gating. Scientific Reports, 2015, 5, 9554.	1.6	27
102	Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochimica Acta, 2016, 199, 172-179.	2.6	27
103	UV-cured Al2O3-laden cellulose reinforced polymer electrolyte membranes for Li-based batteries. Electrochimica Acta, 2015, 153, 97-105.	2.6	26
104	Facile fabrication of cuprous oxide nanocomposite anode films for flexible Li-ion batteries via thermal oxidation. Electrochimica Acta, 2012, 70, 62-68.	2.6	25
105	Surfactant-assisted mild hydrothermal synthesis to nanostructured mixed orthophosphates LiMnyFe1â°'yPO4/C lithium insertion cathode materials. Electrochimica Acta, 2013, 105, 99-109.	2.6	25
106	Montmorillonite-based ceramic membranes as novel lithium-ion battery separators. Ionics, 2014, 20, 943-948.	1.2	25
107	Weak localization in electric-double-layer gated few-layer graphene. 2D Materials, 2017, 4, 035006.	2.0	25
108	Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO ₂ Nanocrystals. Journal of the Electrochemical Society, 2020, 167, 070535.	1.3	25

#	Article	IF	CITATIONS
109	Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries. Composites Science and Technology, 2013, 87, 232-239.	3.8	24
110	Electrochemistry of orthosilicate-based lithium battery cathodes: a perspective. Physical Chemistry Chemical Physics, 2014, 16, 10353-10366.	1.3	24
111	Waste to life: Low-cost, self-standing, 2D carbon fiber green Li-ion battery anode made from end-of-life cotton textile. Electrochimica Acta, 2021, 368, 137644.	2.6	22
112	An elegant and facile single-step UV-curing approach to surface nano-silvering of polymer composites. Soft Matter, 2010, 6, 4666.	1.2	21
113	Floating, Flexible Polymeric Dye‣ensitized Solar ell Architecture: The Way of Nearâ€Future Photovoltaics. Advanced Materials Technologies, 2016, 1, .	3.0	20
114	Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: Unravelling the effect of diboron trioxide. Journal of the European Ceramic Society, 2022, 42, 1023-1032.	2.8	20
115	Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp and Paper Research Journal, 2012, 27, 472-475.	0.3	19
116	Cellulose/acrylate membranes for flexible lithium batteries electrolytes: Balancing improved interfacial integrity and ionic conductivity. European Polymer Journal, 2014, 57, 22-29.	2.6	19
117	Huge field-effect surface charge injection and conductance modulation in metallic thin films by electrochemical gating. Applied Surface Science, 2013, 269, 17-22.	3.1	18
118	Surfactant-assisted mild solvothermal synthesis of nanostructured LiFePO4/C cathodes evidencing ultrafast rate capability. Electrochimica Acta, 2015, 156, 188-198.	2.6	18
119	Superconducting Transition Temperature Modulation in NbN via EDL Gating. Journal of Superconductivity and Novel Magnetism, 2016, 29, 587-591.	0.8	18
120	Novel multiphase electrode/electrolyte composites for next generation of flexible polymeric Li-ion cells. Journal of Applied Electrochemistry, 2013, 43, 137-145.	1.5	16
121	Carrier mobility and scattering lifetime in electric double-layer gated few-layer graphene. Applied Surface Science, 2017, 395, 37-41.	3.1	16
122	Na 3 V 2 (PO 4) 3 ‣upported Electrospun Carbon Nanofiber Nonwoven Fabric as Self‣tanding Naâ€ŀon Cell Cathode. ChemElectroChem, 2020, 7, 1652-1659.	1.7	16
123	Enabling safe and stable Li metal batteries with protic ionic liquid electrolytes and high voltage cathodes. Journal of Power Sources, 2021, 481, 228979.	4.0	16
124	Xanthanâ€Based Hydrogel for Stable and Efficient Quasiâ€6olid Truly Aqueous Dyeâ€6ensitized Solar Cell with Cobalt Mediator. Solar Rrl, 2021, 5, 2170074.	3.1	16
125	Pd/SiO2 as Heterogeneous Catalyst for the Heck Reaction: Evidence for a Sensitivity to the Surface Structure of Supported Particles. Catalysis Letters, 2009, 132, 50-57.	1.4	15
126	Mesoporous Si and Multi-Layered Si/C Films by Pulsed Laser Deposition as Li-Ion Microbattery Anodes. Journal of the Electrochemical Society, 2015, 162, A1816-A1822.	1.3	15

#	Article	IF	CITATIONS
127	Protic Ionic Liquidsâ€Based Crosslinked Polymer Electrolytes: A New Class of Solid Electrolytes for Energy Storage Devices. Energy Technology, 2020, 8, 2000742.	1.8	15
128	Metallopolymer Capacitor in "One Pot―by Self-Directed UV-Assisted Process. ACS Applied Materials & Interfaces, 2010, 2, 3192-3200.	4.0	14
129	Flexible and high performing polymer electrolytes obtained by UV-induced polymer–cellulose grafting. RSC Advances, 2014, 4, 40873-40881.	1.7	14
130	Development of gel-polymer electrolytes and nano-structured electrodes for Li-ion polymer batteries. Journal of Applied Electrochemistry, 2008, 38, 985-992.	1.5	13
131	Novel self-directed dual surface metallisation via UV-curing technique for flexible polymeric capacitors. Organic Electronics, 2010, 11, 1802-1808.	1.4	13
132	UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices. Membranes, 2012, 2, 687-704.	1.4	13
133	Remarkably stable high power Li-ion battery anodes based on vertically arranged multilayered-graphene. Electrochimica Acta, 2015, 182, 500-506.	2.6	13
134	Degradable photopolymerized thiol-based solid polymer electrolytes towards greener Li-ion batteries. Polymer, 2015, 75, 64-72.	1.8	13
135	Sodium diffusion in ionic liquid-based electrolytes for Na-ion batteries: the effect of polarizable force fields. Physical Chemistry Chemical Physics, 2020, 22, 20114-20122.	1.3	13
136	Ultrafast, low temperature microwave-assisted solvothermal synthesis of nanostructured lithium iron phosphate optimized by a chemometric approach. Electrochimica Acta, 2015, 184, 381-386.	2.6	12
137	Ambipolar suppression of superconductivity by ionic gating in optimally doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>BaFe</mml:mi><mr .<="" 2019,="" 3,="" films.="" materials,="" physical="" review="" td="" ultrathin=""><td>າl:mnչ2<td>nml:mn></td></td></mr></mml:msub></mml:mrow></mml:math>	າl:mnչ2 <td>nml:mn></td>	nml:mn>
138	Self-assembly of Li single-ion-conducting block copolymers for improved conductivity and viscoelastic properties. Electrochimica Acta, 2022, 413, 140126.	2.6	11
139	Mechanochemical synthesis and electrochemical properties of nanostructured electrode materials for Li ion batteries. Journal of Solid State Electrochemistry, 2009, 13, 239-243.	1.2	9
140	Nanocast nitrogen-containing ordered mesoporous carbons from glucosamine for selective CO2 capture. Materials Today Sustainability, 2022, 17, 100089.	1.9	9
141	α-Fe2O3 lithium battery anodes by nanocasting strategy from ordered 2D and 3D templates. Journal of Alloys and Compounds, 2014, 615, S482-S486.	2.8	7
142	Characterization of Mn species in mesoporous systems: An electrochemical study. Electrochimica Acta, 2005, 50, 5539-5545.	2.6	6
143	A bilayer polymer electrolyte encompassing pyrrolidinium-based RTIL for binder-free silicon few-layer graphene nanocomposite anodes for Li-ion battery. Electrochemistry Communications, 2020, 118, 106807.	2.3	6
144	Nanostructured Electrodes and Gel-Polymer Electrolyte for an Improved Li-ion Battery. Fuel Cells, 2009. 9, 273-276.	1.5	5

#	Article	IF	CITATIONS
145	Effect of Thermal Stabilization on PAN-Derived Electrospun Carbon Nanofibers for CO2 Capture. Polymers, 2021, 13, 4197.	2.0	5
146	Facile functionalization by π-stacking of macroscopic substrates made of vertically aligned carbon nanotubes: Tracing reactive groups by electrochemiluminescence. Electrochimica Acta, 2011, 56, 9269-9276.	2.6	4
147	UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices. Membranes, 2012, 2, 307-324.	1.4	4
148	Mesoporous Silicon Nanostructures by Pulsed Laser Deposition as Li-Ion Battery Anodes. ECS Transactions, 2014, 62, 107-115.	0.3	4
149	Membranes for lithium batteries. , 2011, , 435-464.		2
150	Structure-Performance Correlation of Nanocellulose-Based Polymer Electrolytes for Efficient Quasi-solid DSSCs. ChemElectroChem, 2014, 1, 1241-1241.	1.7	2
151	Solvent-Free Mechanochemical Approach towards Thiospinel MgCr2S4 as a Potential Electrode for Post-Lithium Ion Batteries. Batteries, 2020, 6, 43.	2.1	2
152	Photopolymers for Third-generation Solar Cells. RSC Polymer Chemistry Series, 2018, , 504-523.	0.1	1
153	Nanostructured photoelectrodes and polymeric nanointerfaces engineering: The critical transition from rigid to flexible dye-sensitized solar cells. , 2015, , .		0
154	6 Carbon from waste source for Li-ion battery. , 2020, , 153-180.		0