Akihiko Kamoshita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6263839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic analysis of root vascular traits in a population from two temperate <i>japonica</i> rice ecotypes. Plant Production Science, 2022, 25, 320-336.	2.0	1
2	Recent changes in rice production in rainfed lowland and irrigated ecosystems in Thailand. Plant Production Science, 2021, 24, 15-28.	2.0	10
3	Ecophysiology of drill-seeded rice under reduced nitrogen fertilizer and reduced irrigation during El Niño in Central Colombia. Plant Production Science, 2021, 24, 418-432.	2.0	1
4	Eco-physiological evaluation of <i>Stele Transversal Area 1</i> for rice root anatomy and shoot growth. Plant Production Science, 2020, 23, 202-210.	2.0	6
5	Salinity intrusion reduces grain yield in coastal paddy fields: case study in two estuaries in the Red River Delta, Vietnam. Paddy and Water Environment, 2020, 18, 399-416.	1.8	3
6	Preliminary Assessment of Rice Production in Coastal Part of Red River Delta Surrounding Xuan Thuy National Park, Vietnam, for Improving Resilience. Science for Sustainable Societies, 2018, , 7-38.	0.5	2
7	Comparative analysis of farmers engaged in participatory research to cope with climate change versus non-participants in Northeast Thailand. Plant Production Science, 2018, 21, 287-301.	2.0	5
8	Salinity intrusion and rice production in Red River Delta under changing climate conditions. Paddy and Water Environment, 2017, 15, 37-48.	1.8	23
9	Near-isogenic lines of IR64 (Oryza sativa subsp. indica cv.) introgressed with DEEPER ROOTING 1 and STELE TRANSVERSAL AREA 1 improve rice yield formation over the background parent across three water management regimes. Plant Production Science, 2017, 20, 249-261.	2.0	6
10	Association between root growth angle and root length density of a near-isogenic line of IR64 rice with <i>DEEPER ROOTING 1</i> under different levels of soil compaction. Plant Production Science, 2017, 20, 162-175.	2.0	26
11	Residual effects of cultivation methods on weed seed banks and weeds in Cambodia. Weed Biology and Management, 2016, 16, 93-107.	1.4	6
12	Field level damage of deepwater rice by the 2011 Southeast Asian Flood in a flood plain of Tonle Sap Lake, Northwest Cambodia. Paddy and Water Environment, 2015, 13, 455-463.	1.8	6
13	Weed biodiversity and rice production during the irrigation rehabilitation process in Cambodia. Agriculture, Ecosystems and Environment, 2014, 194, 1-6.	5.3	17
14	Water availability, management practices and grain yield for deepwater rice in Northwest Cambodia. Field Crops Research, 2013, 152, 44-56.	5.1	4
15	Improvement of resilience of crop production under waterlogged conditions in humid Asia and Africa for sustainable agricultural development. Field Crops Research, 2013, 152, 1-2.	5.1	1
16	Current Status of Research on Improvement of Drought Resistance in Rice (Oryza sativa L.). Japanese Journal of Crop Science, 2011, 80, 1-12.	0.2	6
17	Farmers' Management Practices and Grain Yield of Rice in Response to Different Water Environments in Kamping Puoy Irrigation Rehabilitation Area in Northwest Cambodia. Plant Production Science, 2011, 14, 377-390.	2.0	9
18	Ecophysiological study on weed seed banks and weeds in Cambodian paddy fields with contrasting water availability. Weed Biology and Management, 2010, 10, 261-272.	1.4	33

Ακιμικό Καμοσμιτά

#	Article	IF	CITATIONS
19	High-yielding Crop Management by Enhancing Growth in Reproductive Stage of Direct-Seeded Rainfed Lowland Rice (Oryza sativaL.) in Northeast Thailand. Plant Production Science, 2010, 13, 104-115.	2.0	5
20	Spatial variability in the growth of direct-seeded rainfed lowland rice (Oryza sativa L.) in northeast Thailand. Field Crops Research, 2009, 111, 251-261.	5.1	13
21	Assessment of management of direct seeded rice production under different water conditions in Cambodia. Paddy and Water Environment, 2008, 6, 91-103.	1.8	27
22	Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Research, 2008, 109, 1-23.	5.1	265
23	Preflowering Abortion Reduces Spikelet Number in Upland Rice (<i>Oryza sativa</i> L.) under Water Stress. Crop Science, 2008, 48, 2389-2395.	1.8	87
24	Varietal Differences in Stem Diameter and Rooting Number of Phytomers in Conjunction with Root System Development of Field-Grown Rice (<i>Oryza sativa</i> L.). Plant Production Science, 2007, 10, 357-360.	2.0	6
25	Evaluation of Water-Saving Rice-Winter Crop Rotation System in a Suburb of Tokyo. Plant Production Science, 2007, 10, 219-231.	2.0	10
26	Historical Changes in Urban Rice Production Systems in Tokyo, Japan. Plant Production Science, 2007, 10, 245-269.	2.0	11
27	Growth of Rice (Oryza SativaL.) Cultivars Under Upland Conditions With Different Levels of Water Supply3. Root System Development, Soil Moisture Changeand Plant Water Status. Plant Production Science, 2007, 10, 3-13.	2.0	46
28	Genotypic differences in grain yield of transplanted and direct-seeded rainfed lowland rice (Oryza) Tj ETQq0 0 0	rgBT /Over	lock 10 Tf 50
29	Evaluating the resistance of six rice cultivars to drought: restriction of deep rooting and the use of raised beds. Plant and Soil, 2007, 300, 149-161.	3.7	38
30	Improvement of rice (Oryza sativa L.) growth in upland conditions with deep tillage and mulch. Soil and Tillage Research, 2007, 92, 30-44.	5.6	22
31	Genotypic Variation in Root Growth Angle in Rice (Oryza sativa L.) and its Association with Deep Root Development in Upland Fields with Different Water Regimes. Plant and Soil, 2006, 287, 117-129.	3.7	202
32	Effect of Planting Density on Grain Yield and Water Productivity of Rice (Oryza sativaL.) Grown in Flooded and Non-flooded Fields in Japan. Plant Production Science, 2006, 9, 298-311.	2.0	37
33	Growth of Three Rice (Oryza sativaL.) Cultivars under Upland Conditions with Different Levels of Water Supply. Plant Production Science, 2006, 9, 422-434.	2.0	38
34	Growth of Three Rice Cultivars (Oryza sativaL.) under Upland Conditions with Different Levels of Water Supply. Plant Production Science, 2006, 9, 435-445.	2.0	35
35	Genotypic Variation in Response of Rainfed Lowland Rice to Prolonged Drought and Rewatering. Plant Production Science, 2004, 7, 406-420.	2.0	85
36	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. Plant Production Science, 2000, 3, 173-179.	2.0	46

#	Article	IF	CITATIONS
37	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. III. Water extraction during the drought period. Plant Production Science, 2000, 3, 189-196.	2.0	72
38	Genotypic Variation in Response of Rainfed Lowland Rice to Drought and Rewatering. Plant Production Science, 2000, 3, 180-188.	2.0	96