Frank J Hernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/626372/publications.pdf

Version: 2024-02-01

26 papers 1,208 citations

471509 17 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

1918 citing authors

#	Article	IF	CITATIONS
1	Nuclease activity: an exploitable biomarker in bacterial infections. Expert Review of Molecular Diagnostics, 2022, 22, 265-294.	3.1	7
2	Discovery and Proof-of-Concept Study of Nuclease Activity as a Novel Biomarker for Breast Cancer Tumors. Cancers, 2021, 13, 276.	3.7	8
3	Rational Design and Experimental Analysis of Short-Oligonucleotide Substrate Specificity for Targeting Bacterial Nucleases. Journal of Medicinal Chemistry, 2021, 64, 12855-12864.	6.4	5
4	Activatable MRI probes for the specific detection of bacteria. Analytical and Bioanalytical Chemistry, 2021, 413, 7353-7362.	3.7	7
5	Ultra-Sensitive and Specific Detection of S. aureus Bacterial Cultures Using an Oligonucleotide Probe Integrated in a Lateral Flow-Based Device. Diagnostics, 2021, 11, 2022.	2.6	2
6	Nucleases as molecular targets for cancer diagnosis. Biomarker Research, 2021, 9, 86.	6.8	20
7	Kinetic Screening of Nuclease Activity using Nucleic Acid Probes. Journal of Visualized Experiments, 2019, , .	0.3	4
8	Rapid and specific detection of Salmonella infections using chemically modified nucleic acid probes. Analytica Chimica Acta, 2019, 1054, 157-166.	5.4	23
9	Catalysis of a 1,3-dipolar reaction by distorted DNA incorporating a heterobimetallic platinum(<scp>ii</scp>) and copper(<scp>ii</scp>) complex. Chemical Science, 2017, 8, 7038-7046.	7.4	6
10	Nuclease activity as a specific biomarker for breast cancer. Chemical Communications, 2016, 52, 12346-12349.	4.1	11
11	Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosensors and Bioelectronics, 2016, 86, 27-32.	10.1	64
12	Small molecule detection by lateral flow strips via aptamer-gated silica nanoprobes. Analyst, The, 2016, 141, 2595-2599.	3.5	26
13	Aptamers Overview: Selection, Features and Applications. Current Topics in Medicinal Chemistry, 2015, 15, 1066-1081.	2.1	31
14	Targeted Inhibition of Prostate Cancer Metastases with an RNA Aptamer to Prostate-specific Membrane Antigen. Molecular Therapy, 2014, 22, 1910-1922.	8.2	91
15	NanoKeepers: stimuli responsive nanocapsules for programmed specific targeting and drug delivery. Chemical Communications, 2014, 50, 9489-9492.	4.1	20
16	Noninvasive imaging of Staphylococcus aureus infections with a nuclease-activated probe. Nature Medicine, 2014, 20, 301-306.	30.7	91
17	Staphylococcus aureus Nuc2 Is a Functional, Surface-Attached Extracellular Nuclease. PLoS ONE, 2014, 9, e95574.	2.5	58
18	Targeting cancer cells with controlled release nanocapsules based on a single aptamer. Chemical Communications, 2013, 49, 1285.	4.1	48

#	Article	IF	CITATIONS
19	Methods for Evaluating Cell-Specific, Cell-Internalizing RNA Aptamers. Pharmaceuticals, 2013, 6, 295-319.	3.8	30
20	Degradation of Nuclease-Stabilized RNA Oligonucleotides in Mycoplasma-Contaminated Cell Culture Media. Nucleic Acid Therapeutics, 2012, 22, 58-68.	3.6	32
21	Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers. Nucleic Acids Research, 2012, 40, 6319-6337.	14.5	186
22	RNA Aptamer-Based Functional Ligands of the Neurotrophin Receptor, TrkB. Molecular Pharmacology, 2012, 82, 623-635.	2.3	39
23	Graphene and Other Nanomaterial-Based Electrochemical Aptasensors. Biosensors, 2012, 2, 1-14.	4.7	82
24	Rational Truncation of an RNA Aptamer to Prostate-Specific Membrane Antigen Using Computational Structural Modeling. Nucleic Acid Therapeutics, 2011, 21, 299-314.	3.6	106
25	Improved thrombin binding aptamer by incorporation of a single unlocked nucleic acid monomer. Nucleic Acids Research, 2011, 39, 1155-1164.	14.5	155
26	Aptamers as a model for functional evaluation of LNA and 2′-amino LNA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6585-6587.	2.2	56