Masataka Hakamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6263156/publications.pdf

Version: 2024-02-01

218592 243529 2,234 107 26 44 citations g-index h-index papers 107 107 107 2152 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Life cycle inventory study on magnesium alloy substitution in vehicles. Energy, 2007, 32, 1352-1360.	4.5	163
2	Mechanical strength of nanoporous gold fabricated by dealloying. Scripta Materialia, 2007, 56, 1003-1006.	2.6	135
3	Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 311-317.	2.6	132
4	Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. Journal of Alloys and Compounds, 2009, 485, 583-587.	2.8	108
5	Fabrication of nanoporous palladium by dealloying and its thermal coarsening. Journal of Alloys and Compounds, 2009, 479, 326-329.	2.8	105
6	Relationship between hardness and grain size in electrodeposited copper films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 457, 120-126.	2.6	94
7	Hydrogen Storage Properties of Nanoporous Palladium Fabricated by Dealloying. Journal of Physical Chemistry C, 2010, 114, 868-873.	1.5	94
8	Nanoporous Gold Prism Microassembly through a Self-Organizing Route. Nano Letters, 2006, 6, 882-885.	4.5	89
9	Density dependence of the compressive properties of porous copper over a wide density range. Acta Materialia, 2007, 55, 2291-2299.	3.8	83
10	Thermal coarsening of nanoporous gold: Melting or recrystallization. Journal of Materials Research, 2009, 24, 301-304.	1.2	52
11	Preparation of Nanoporous Palladium by Dealloying: Anodic Polarization Behaviors of Pd-M (M=Fe, Co,) Tj ETQq1	1 8.7843	14.rgBT /Over
12	Fabrication of Porous Aluminum by Spacer Method Consisting of Spark Plasma Sintering and Sodium Chloride Dissolution. Materials Transactions, 2005, 46, 2624-2628.	0.4	47
13	High sound absorption of porous aluminum fabricated by spacer method. Applied Physics Letters, 2006, 88, 254106.	1.5	45
14	Fabrication of carbon nanotube/NiOx(OH)y nanocomposite by pulsed electrodeposition for supercapacitor applications. Journal of Power Sources, 2014, 245, 324-330.	4.0	43
15	Microstructural evolution in nanoporous gold by thermal and acid treatments. Materials Letters, 2008, 62, 483-486.	1.3	41
16	Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors. Journal of Power Sources, 2016, 325, 670-674.	4.0	39
17	Monotonic and cyclic compressive properties of porous aluminum fabricated by spacer method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 286-293.	2.6	38
18	Sound absorption characteristics of porous aluminum fabricated by spacer method. Journal of Applied Physics, 2006, 100, 114908.	1.1	32

#	Article	IF	Citations
19	Fabrication, Microstructure, and Properties of Nanoporous Pd, Ni, and Their Alloys by Dealloying. Critical Reviews in Solid State and Materials Sciences, 2013, 38, 262-285.	6.8	32
20	Coercivity of nanoporous Ni produced by dealloying. Applied Physics Letters, 2009, 94, 153105.	1.5	31
21	Influence of Porosity and Pore Size on Electrical Resistivity of Porous Aluminum Produced by Spacer Method. Materials Transactions, 2007, 48, 32-36.	0.4	30
22	Compressive Deformation Behavior at Elevated Temperatures in a Closed-Cell Aluminum Foam. Materials Transactions, 2005, 46, 1677-1680.	0.4	29
23	Effect of Sintering Temperature on Compressive Properties of Porous Aluminum Produced by Spark Plasma Sintering. Materials Transactions, 2005, 46, 186-188.	0.4	29
24	Solid/electrolyte interface phenomena during anodic polarization of Pd0.2M0.8 (M=Fe, Co, Ni) alloys in H2SO4. Journal of Alloys and Compounds, 2010, 494, 309-314.	2.8	28
25	Electrochemical actuation of nanoporous Ni in NaOH solution. Materials Letters, 2012, 70, 132-134.	1.3	26
26	Antimicrobial mechanisms due to hyperpolarisation induced by nanoporous Au. Scientific Reports, 2018, 8, 3870.	1.6	26
27	Electrochemical stability of self-assembled monolayers on nanoporous Au. Physical Chemistry Chemical Physics, 2011, 13, 12277.	1.3	24
28	Catalytic decoloration of methyl orange solution by nanoporous metals. Catalysis Science and Technology, 2012, 2, 1814.	2.1	23
29	Influence of distribution of oxide contaminants on fatigue behavior in AZ31 Mg alloy recycled by solid-state processing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 424, 355-360.	2.6	21
30	Dynamic recrystallization during hot compression of as-cast and homogenized noncombustible Mg–9Al–1Zn–1Ca (in mass%) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7143-7146.	2.6	21
31	Enzyme electrodes stabilized by monolayer-modified nanoporous Au for biofuel cells. Gold Bulletin, 2012, 45, 9-15.	1.1	21
32	Enhanced thermal stability of laccase immobilized on monolayer-modified nanoporous Au. Materials Letters, 2012, 66, 4-6.	1.3	19
33	Fabrication of copper microchannels by the spacer method. Scripta Materialia, 2007, 56, 781-783.	2.6	18
34	Dynamic recrystallization behavior during compressive deformation in Mg–Al–Ca–RE alloy. Journal of Materials Science, 2008, 43, 2066-2068.	1.7	18
35	Microfluidic flows in metallic microchannels fabricated by the spacer method. Journal of Micromechanics and Microengineering, 2008, 18, 075029.	1.5	17
36	Tensile Properties of Forged Mg-Al-Zn-Ca Alloy. Materials Transactions, 2008, 49, 554-558.	0.4	17

3

#	Article	IF	CITATIONS
37	Effect of initial microstructures on hot forging of Ca-containing cast Mg alloys. Journal of Materials Science, 2010, 45, 719-724.	1.7	16
38	Fatigue behavior of AZ31 magnesium alloy produced by solid-state recycling. Journal of Materials Science, 2006, 41, 3229-3232.	1.7	15
39	First-principles Study of Hydrogen-induced Embrittlement in Fe Grain Boundary with Cr Segregation. ISIJ International, 2015, 55, 1131-1134.	0.6	15
40	Antibacterial activity of nanoporous gold against <i>Escherichia coli</i> and <i>Staphylococcus epidermidis</i> . Journal of Materials Research, 2017, 32, 1787-1795.	1,2	15
41	Compressive properties at elevated temperatures of porous aluminum processed by the spacer method. Journal of Materials Research, 2005, 20, 3385-3390.	1.2	14
42	Nanoporous surface fabricated on metal sheets by alloying/dealloying technique. Materials Letters, 2010, 64, 2341-2343.	1.3	14
43	Abnormal Hydrogen Absorption/Desorption Properties of Nanoporous Pt with Large Lattice Strains. Materials Transactions, 2011, 52, 806-809.	0.4	14
44	Fabrication by spacer method and evaluation of porous metals. Keikinzoku/Journal of Japan Institute of Light Metals, 2012, 62, 313-321.	0.1	14
45	Water-adsorption effect on electrical resistivity of nanoporous gold. Scripta Materialia, 2016, 123, 30-33.	2.6	14
46	Electrical resistivity of nanoporous gold modified with thiol self-assembled monolayers. Applied Surface Science, 2016, 387, 1088-1092.	3.1	14
47	Preparation of Nanoporous Ruthenium Catalyst and Its CO Oxidation Characteristics. Materials Transactions, 2012, 53, 524-530.	0.4	13
48	Tensile ductility at room temperature of nanocrystalline Ni–W alloy. Journal of Materials Science, 2006, 41, 8372-8376.	1.7	12
49	Effects of Homogenization Annealing on Dynamic Recrystallization in Mg-Al-Ca-RE (Rare Earth) Alloy. Materials Transactions, 2008, 49, 1032-1037.	0.4	12
50	Surface effects on saturation magnetization in nanoporous Ni. Philosophical Magazine, 2010, 90, 1915-1924.	0.7	12
51	Nanoporous Nickel Fabricated by Dealloying of Rolled Ni-Mn Sheet. Procedia Engineering, 2014, 81, 2159-2164.	1.2	12
52	Effects of Vacancies on Deformation Behavior in Nanocrystalline Nickel. Materials Transactions, 2008, 49, 2315-2321.	0.4	11
53	Effects of Pore Characteristics Finely-Controlled by Spacer Method on Damping Capacity of Porous Aluminum. Materials Transactions, 2009, 50, 427-429.	0.4	11
54	Deformation behavior of an ultrafine grained two phase Co–Cu alloy processed by electrodeposition. Scripta Materialia, 2010, 63, 132-135.	2.6	11

#	Article	IF	CITATIONS
55	Ferromagnetic Properties of Co-Cu Alloy with Nanoscale Lamellar Structure. Materials Transactions, 2009, 50, 419-422.	0.4	10
56	Grain Refinement and Superplasticity Induced by Hot Compression of Continuously-Casted Mg-9Al-1Zn-1Ca and Mg-9Al-1Zn Alloys. Materials Transactions, 2009, 50, 711-718.	0.4	9
57	Carbothermic Reduction of Amorphous Silica Refined from Diatomaceous Earth. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 350-358.	1.0	9
58	Magnetism of fcc/fcc, hcp/hcp twin and fcc/hcp twin-like boundaries in cobalt. Applied Physics A: Materials Science and Processing, 2012, 106, 237-244.	1.1	9
59	Saturation magnetization in supersaturated solid solution of Co–Cu alloy. Applied Physics Letters, 2009, 95, .	1.5	8
60	Tension/Compression Anisotropy in Hot Forged Mg-Al-Ca-RE Alloy. Materials Transactions, 2009, 50, 1898-1901.	0.4	7
61	Molecular dynamics study of laccase immobilized on self-assembled monolayer-modified Au. Journal of Materials Science, 2017, 52, 12848-12853.	1.7	7
62	Joining of Anodized and Stacked Aluminum Sheets by Copper Electrodeposition: Nano-Anchor Effect. Materials Transactions, 2018, 59, 324-326.	0.4	7
63	Processing of three-dimensional metallic microchannels by spacer method. Materials Letters, 2008, 62, 1118-1121.	1.3	6
64	Atomic bond-breaking behaviour during grain boundary fracture in a C-segregated Fe grain boundary. Philosophical Magazine Letters, 2017, 97, 311-319.	0.5	6
65	Electronic origin of antimicrobial activity owing to surface effect. Scientific Reports, 2019, 9, 1091.	1.6	6
66	Large-strain-induced magnetic properties of Co electrodeposited on nanoporous Au. Journal of Applied Physics, 2011, 109, 084315.	1.1	5
67	Anomalous mechanical characteristics of Au/Cu nanocomposite processed by Cu electroplating. Philosophical Magazine, 2015, 95, 1499-1510.	0.7	5
68	Mechanical characterization of nanoporous Au modified with self-assembled monolayers. Applied Physics Letters, 2016, 109, 261905.	1.5	5
69	Bimodal nanoporous platinum on sacrificial nanoporous copper for catalysis of the oxygen-reduction reaction. MRS Communications, 2019, 9, 292-297.	0.8	5
70	Fluid Conductivity of Porous Aluminum Fabricated by Powder-Metallurgical Spacer Method. Japanese Journal of Applied Physics, 2006, 45, L575-L577.	0.8	4
71	A superelastic nanocrystalline Cu–Sn alloy thin film processed by electroplating. Materials Letters, 2008, 62, 4473-4475.	1.3	4
72	Improvement in strength and ductility of magnesium alloy parts by hot forging. Keikinzoku/Journal of Japan Institute of Light Metals, 2010, 60, 88-92.	0.1	4

#	Article	IF	CITATIONS
73	Visible-light photocatalysis of ZnO deposited on nanoporous Au. Applied Physics A: Materials Science and Processing, 2014, 114, 1061-1066.	1.1	4
74	Detachment of Mesenchymal Stem Cells and Their Cell Sheets Using pH-Responsive CaCO ₃ Particles. Materials Transactions, 2019, 60, 2456-2463.	0.4	4
75	Heterogeneous role of integrins in fibroblast response to small cyclic mechanical stimulus generated by a nanoporous gold actuator. Acta Biomaterialia, 2021, 121, 418-430.	4.1	4
76	Comparison of Mechanical Properties of Thin Copper Films Processed by Electrodeposition and Rolling. Materials Transactions, 2007, 48, 2336-2339.	0.4	3
77	Formation of Nanoporous Structure on Pt Plate Surface by Alloying/Dealloying Technique. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 42-46.	0.2	3
78	Synthesis of carbon nanotube/Ni nanocomposite film by electrophoresis and electroless deposition without Pd pretreatment. Thin Solid Films, 2013, 531, 99-102.	0.8	3
79	Nano-anchor effect by anodic oxidation of aluminum sheets in joining by electrodeposition. Procedia Manufacturing, 2018, 15, 1416-1421.	1.9	3
80	Inactivation of HeLa cells on nanoporous gold. Materialia, 2019, 7, 100370.	1.3	3
81	Oxygen reduction on bimodal nanoporous palladium–copper catalyst synthesized using sacrificial nanoporous copper. Journal of Materials Research, 2019, 34, 2086-2094.	1.2	3
82	A new mechanism for reduced cell adhesion: Adsorption dynamics of collagen on a nanoporous gold surface. Materials Science and Engineering C, 2021, 119, 111461.	3.8	3
83	New Dissimilar Joining Method of CFRP/A6061 Al by Cu Electrodeposition. Materials Transactions, 2021, 62, 688-690.	0.4	3
84	Processing of Nanoporous Gold by Dealloying and its Morphological Control. Materials Science Forum, 2007, 561-565, 1657-1660.	0.3	2
85	Grain Refinement of Mg-Al-Zn Alloy Bar during Hot Compression. Materials Science Forum, 0, 706-709, 1267-1272.	0.3	2
86	Softening due to disordered grain boundaries in nanocrystalline Co. Journal of Physics Condensed Matter, 2013, 25, 345702.	0.7	2
87	Fabrication and Catalytic Decoloration Capacity of Nanodendritic Metals. Materials Transactions, 2014, 55, 534-538.	0.4	2
88	Energy jump during bond breaking. Physical Review B, 2017, 96, .	1.1	2
89	Atomistic study of inelastic deformation in aluminium grain boundary fractures. Philosophical Magazine Letters, 2017, 97, 476-485.	0.5	2
90	Antibacterial activity of ultrathin platinum islands on flat gold against Escherichia coli. Scientific Reports, 2020, 10, 9594.	1.6	2

#	Article	IF	Citations
91	Effects of actuation of nanoporous gold on cell orientation in a fibroblast sheet. Journal of Materials Science: Materials in Medicine, 2021, 32, 103.	1.7	2
92	Adsorption of RGD Tripeptide on Au (111) Surface. Materials Transactions, 2019, 60, 1711-1715.	0.4	2
93	Porous Metals Produced by Spacer Method as Ecomaterials. Advanced Materials Research, 2006, 15-17, 416-421.	0.3	1
94	Stabilization and Decomposition of Organic Matters by Nano-porous Metals. , 2014, 4, 335-340.		1
95	Sterilization by a Pulsed Electric Field with Dendritic Gold Electrodes. Materials Transactions, 2018, 59, 1210-1213.	0.4	1
96	Effects of nanoporous Au on ATP synthase. MRS Communications, 2020, 10, 173-178.	0.8	1
97	Dissimilar joining of alumina to aluminum at room temperature without applying a loading by two-step deposition. Materials Letters, 2021, 286, 129245.	1.3	1
98	Sound Absorption Behavior of Porous Al Produced by Spacer Method. Advanced Materials Research, 2006, 15-17, 422-427.	0.3	0
99	Influence of Density on the Compressive Properties in Porous Copper Produced by Spacer Method. Materials Science Forum, 2007, 561-565, 1661-1664.	0.3	0
100	Compressive Properties of Porous Metals with Homogeneous Pore Characteristics. Key Engineering Materials, 2007, 340-341, 415-420.	0.4	0
101	ã,»ãƒ«æ§‹é€å^¶å¾¡ã«ã,°ã,vãƒãƒ¼ãƒ©ã,¹é‡'属ã®åŠ›å¦ç‰¹æ€§ã®å'上. Materia Japan, 2008, 47, 182-185.	0.1	0
102	Nanoporous Ni and Ni-Cu Fabricated by Dealloying. Materials Research Society Symposia Proceedings, 2009, 1228, 60201.	0.1	0
103	Rotary-Die Equal Channel Angular Pressing Method for Light Metals. Materials Science Forum, 2010, 638-642, 1614-1617.	0.3	0
104	Fabrication and Properties of Nanoporous Metals. Materia Japan, 2011, 50, 168-171.	0.1	0
105	Detachment of human mesenchymal stem cells from a gold substrate using electric current. Materialia, 2020, 13, 100866.	1.3	0
106	OS0116 Relationship between grain boundary energy and free volume in magnesium: first-principles study. The Proceedings of the Materials and Mechanics Conference, 2014, 2014, _OS0116-1OS0116-3	0.0	0
107	Old and new nanomaterials: nanoporous metals. Keikinzoku/Journal of Japan Institute of Light Metals, 2022, 72, 58-65.	0.1	0