
Stephen Self

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6262762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Understanding Deccan Volcanism. Annual Review of Earth and Planetary Sciences, 2022, 50, 477-506.	4.6	10
2	On Synchronous Supereruptions. Frontiers in Earth Science, 2022, 10, .	0.8	2
3	Exposed columns in the Valles Caldera ignimbrites as records of hydrothermal cooling, Jemez Mountains, New Mexico, USA. Journal of Volcanology and Geothermal Research, 2022, 426, 107536.	0.8	8
4	Capturing the Extreme in Volcanology: The Case for the Term "Supervolcano― Frontiers in Earth Science, 2022, 10, .	0.8	1
5	Thickness Characteristics of PÄhoehoe Lavas in the Deccan Province, Western Ghats, India, and in Continental Flood Basalt Provinces Elsewhere. Frontiers in Earth Science, 2021, 8, .	0.8	16
6	Some Lava Flows May Not Have Been as Thick as They Appear. Geophysical Research Letters, 2021, 48, .	1.5	1
7	No Cretaceousâ€Paleogene Boundary in Exposed Rajahmundry Traps: A Refined Chronology of the Longest Deccan Lava Flows From ⁴⁰ Ar/ ³⁹ Ar Dates, Magnetostratigraphy, and Biostratigraphy. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009149.	1.0	20
8	Lavaâ€Rise Plateaus and Inflation Pits in the McCartys Lava Flow Field, New Mexico: An Analog for PÄhoehoeâ€Like Lava Flows on Planetary Surfaces. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE005975.	1.5	15
9	Subplinian monogenetic basaltic eruption of Sunset Crater, Arizona, USA. Bulletin of the Geological Society of America, 2019, 131, 661-674.	1.6	15
10	The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science, 2019, 363, 866-870.	6.0	254
11	QUANTITATIVE ESTIMATES OF DECCAN FLOOD BASALT ERUPTIVE FLUXES AND CLIMATE CONSEQUENCES. , 2019, , .		Ο
12	Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts. , 2018, 14, 572-603.		75
13	THE ROLE OF GEOCHRONOLOGY IN LINKING FLOOD BASALTS TO MASS EXTINCTIONS. , 2018, , .		Ο
14	Assessing eruption column height in ancient flood basalt eruptions. Earth and Planetary Science Letters, 2017, 457, 263-270.	1.8	31
15	Triggering of the largest Deccan eruptions by the Chicxulub impact: Reply. Bulletin of the Geological Society of America, 2017, 129, 256-256.	1.6	2
16	Petrogenesis of the Peralkaline Ignimbrites of Terceira, Azores. Journal of Petrology, 2017, 58, 2365-2402.	1.1	21
17	Evenly spaced columns in the Bishop Tuff (California, USA) as relicts of hydrothermal cooling. Geology, 2017, 45, 1015-1018.	2.0	12
18	Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 569-589.	3.6	105

#	Article	IF	CITATIONS
19	Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA). Journal of Volcanology and Geothermal Research, 2016, 321, 1-17.	0.8	23
20	Estimating the eruptive volume of a large pyroclastic body: the Otowi Member of the Bandelier Tuff, Valles caldera, New Mexico. Bulletin of Volcanology, 2016, 78, 1.	1.1	36
21	Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nature Geoscience, 2016, 9, 77-82.	5.4	92
22	DON SWANSON'S CONTRIBUTIONS TO UNDERSTANDING FLOOD BASALT EMPLACEMENT RATES AND VENT 2016, , .	S.,	0
23	CHANGING ERUPTION STYLES DURING THE ~1085 CE SUNSET CRATER ERUPTION, NORTHERN ARIZONA. , 2016, , .		0
24	The great 1815 eruption of Tambora and future risks from largeâ€scale volcanism. Geology Today, 2015, 31, 132-136.	0.3	7
25	Explosive Super-Eruptions and Potential Global Impacts. , 2015, , 399-418.		12
26	Volatile release from flood basalt eruptions: understanding the potential environmental effects. , 2015, , 164-176.		1
27	The â^¼1000-years BP explosive eruption of Caldeira Volcano (Faial, Azores): the first stage of incremental caldera formation. Bulletin of Volcanology, 2015, 77, 1.	1.1	38
28	Triggering of the largest Deccan eruptions by the Chicxulub impact. Bulletin of the Geological Society of America, 2015, 127, 1507-1520.	1.6	149
29	Large Igneous Provinces andÂBioticÂExtinctions. , 2015, , 1049-1058.		8
30	Large Igneous Provinces and Flood Basalt Volcanism. , 2015, , 441-455.		8
31	Tying down eruption risk. Nature Geoscience, 2015, 8, 248-250.	5.4	9
32	State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science, 2015, 350, 76-78.	6.0	300
33	Changes in spore chemistry and appearance with increasing maturity. Review of Palaeobotany and Palynology, 2014, 201, 41-46.	0.8	46
34	Deposition and generation of multiple widespread fall units from the c. AD 1314 Kaharoa rhyolitic eruption, Tarawera, New Zealand. Bulletin of Volcanology, 2014, 76, 1.	1.1	11
35	Reply to comment by Coleâ€Dai et al. on "Climatic impact of the longâ€lasting Laki eruption: Inapplicability of massâ€independent sulfur isotope composition measurementsâ€: Journal of Geophysical Research D: Atmospheres, 2014, 119, 6636-6637.	1.2	0
36	Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province. Earth and Planetary Science Letters, 2013, 368, 183-194.	1.8	16

#	Article	IF	CITATIONS
37	Processes and Timescales of Magma Genesis and Differentiation Leading to the Great Tambora Eruption in 1815. Journal of Petrology, 2012, 53, 271-297.	1.1	37
38	The 1963–1964 eruption of Agung volcano (Bali, Indonesia). Bulletin of Volcanology, 2012, 74, 1521-1536.	1.1	42
39	Volcanism and the atmosphere. Eos, 2012, 93, 511-514.	0.1	1
40	Correction to "The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years― Journal of Geophysical Research, 2012, 117, n/a-n/a.	3.3	0
41	Climatic impact of the longâ€lasting 1783 Laki eruption: Inapplicability of massâ€independent sulfur isotopic composition measurements. Journal of Geophysical Research, 2012, 117, .	3.3	32
42	UV-B absorbing pigments in spores: biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Research, 2011, 30, 8312.	1.6	38
43	´A´ĕlava flows in the Deccan Volcanic Province, India, and their significance for the nature of continental flood basalt eruptions. Bulletin of Volcanology, 2011, 73, 737-752.	1.1	41
44	Ignimbrite stratigraphy and chronology on Terceira Island, Azores. , 2010, , .		17
45	New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: Implications for duration of flood basalt eruption episodes. Lithos, 2010, 118, 213-222.	0.6	81
46	The largest volcanic eruptions on Earth. Earth-Science Reviews, 2010, 102, 207-229.	4.0	251
47	Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation. Earth and Planetary Science Letters, 2010, 299, 328-338.	1.8	31
48	New palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: implications for the volcanostratigraphic architecture of continental flood basalt provinces. Journal of the Geological Society, 2009, 166, 13-24.	0.9	63
49	A Cryptoendolithic Community in Volcanic Glass. Astrobiology, 2009, 9, 369-381.	1.5	55
50	Effects of megascale eruptions on Earth and Mars. , 2009, , .		8
51	Floods of water and lava in the Columbia River Basin: Analogs for Mars. , 2009, , .		4
52	Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bulletin of Volcanology, 2008, 70, 1043-1067.	1.1	86
53	Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience, 2008, 1, 592-596.	5.4	68
54	Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?. Journal of Volcanology and Geothermal Research, 2008, 172, 3-19.	0.8	114

#	Article	IF	CITATIONS
55	Enigmatic clastogenic rhyolitic volcanism: The Corral de Coquena spatter ring, North Chile. Journal of Volcanology and Geothermal Research, 2008, 177, 812-821.	0.8	10
56	The AD 1362 Öræfajökull eruption, S.E. Iceland: Physical volcanology and volatile release. Journal of Volcanology and Geothermal Research, 2008, 178, 719-739.	0.8	22
57	Consequences of Explosive Supereruptions. Elements, 2008, 4, 41-46.	0.5	79
58	Sulfur and Chlorine in Late Cretaceous Deccan Magmas and Eruptive Gas Release. Science, 2008, 319, 1654-1657.	6.0	166
59	Bacterial Colonization and Weathering of Terrestrial Obsidian in Iceland. Geomicrobiology Journal, 2008, 25, 25-37.	1.0	49
60	Volcanogenic nutrient fluxes and plant ecosystems in large igneous provinces: an example from the Columbia River Basalt Group. Journal of the Geological Society, 2008, 165, 955-966.	0.9	29
61	Role of Syn-eruptive Cooling and Degassing on Textures of Lavas from the AD 1783-1784 Laki Eruption, South Iceland. Journal of Petrology, 2007, 48, 1265-1294.	1.1	44
62	Rapid determination of spore chemistry using thermochemolysis gas chromatography-mass spectrometry and micro-Fourier transform infrared spectroscopy. Photochemical and Photobiological Sciences, 2007, 6, 689.	1.6	58
63	Discrimination of fluvial and eolian features on large ignimbrite sheets around La Pacana Caldera, Chile, using Landsat and SRTM-derived DEM. Remote Sensing of Environment, 2007, 108, 24-41.	4.6	34
64	Flood lavas on Earth, Io and Mars. Journal of the Geological Society, 2006, 163, 253-264.	0.9	96
65	The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. Journal of Geophysical Research, 2006, 111, .	3.3	91
66	George Walker, 1926–2005. Eos, 2006, 87, 325.	0.1	2
67	Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters, 2006, 248, 518-532.	1.8	273
68	Carbon isotopic gradients in the Martian crust: implications for past or present life on Mars. , 2006, , .		0
69	Segregation processes in vesiculating crystallizing magmas. Journal of Volcanology and Geothermal Research, 2006, 153, 287-300.	0.8	18
70	Gas Fluxes from Flood Basalt Eruptions. Elements, 2005, 1, 283-287.	0.5	120
71	Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784. , 2005, , .		23
72	Volcanic air pollution and mortality in France 1783–1784. Comptes Rendus - Geoscience, 2005, 337, 641-651.	0.4	46

#	Article	IF	CITATIONS
73	Monitoring the evolution of the Pasig–Potrero alluvial fan, Pinatubo Volcano, using a decade of remote sensing data. Journal of Volcanology and Geothermal Research, 2004, 138, 371-392.	0.8	36
74	Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. Journal of Geophysical Research, 2003, 108, AAC 7-1.	3.3	367
75	The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bulletin of Volcanology, 2001, 62, 493-518.	1.1	71
76	Experiments on gas-ash separation processes in volcanic umbrella plumes. Journal of Volcanology and Geothermal Research, 1996, 70, 169-181.	0.8	58
77	Petrology and sulfur and chlorine emissions of the 1963 eruption of Gunung Agung, Bali, Indonesia. Bulletin of Volcanology, 1996, 58, 263-285.	1.1	89
78	Volcanic eruptions, prediction, hazard assessment, remote sensing, and societal implications. Reviews of Geophysics, 1995, 33, 257.	9.0	7
79	Wind-driven dispersal of volcanic ash plumes and its control on the thermal structure of the plume-top. Bulletin of Volcanology, 1995, 57, 283-292.	1.1	3
80	Atmospheric Aerosol Loading and Transport Due to the 1783-84 Laki Eruption in Iceland, Interpreted from Ash Particles and Acidity in the GISP2 Ice Core. Quaternary Research, 1994, 42, 231-240.	1.0	72
81	Volcanology and Geothermal Energy. Journal of Volcanology and Geothermal Research, 1994, 60, 330-331.	0.8	0
82	The year without a summer? World climate in 1816. Journal of Volcanology and Geothermal Research, 1993, 56, 173-174.	0.8	0
83	Climate-Volcanism Feedback and the Toba Eruption of â^¼74,000 Years Ago. Quaternary Research, 1993, 40, 269-280.	1.0	157
84	Krakatau revisited: The course of events and interpretation of the 1883 eruption. Geo Journal, 1992, 28, 109.	1.7	42
85	Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height. Nature, 1992, 355, 628-630.	13.7	65
86	Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature, 1992, 359, 50-52.	13.7	395
87	Mafic Dykes and Emplacement Mechanisms. Journal of Volcanology and Geothermal Research, 1992, 49, 385-386.	0.8	0
88	Ashfall dispersal for the 16 September 1986, eruption of Lascar, Chile, calculated by a turbulent diffusion model. Geophysical Research Letters, 1991, 18, 1237-1240.	1.5	50
89	Analysis of active volcanoes from the earth observing system. Remote Sensing of Environment, 1991, 36, 1-12.	4.6	40
90	Soft-sediment deformation (fluid escape) features in a coarse-grained pyroclasticsurge deposit, north-central New Mexico. Sedimentology, 1989, 36, 943-947.	1.6	5

#	Article	IF	CITATIONS
91	Remote sensing of volcanos and volcanic terrains. Eos, 1989, 70, 1567.	0.1	22
92	Lava-dome growth and explosive volcanism in the Jemez Mountains, New Mexico: Evidence from the plio-pleistocene puye alluvial fan. Journal of Volcanology and Geothermal Research, 1989, 36, 267-291.	0.8	15
93	Volcanic successions: Modern and ancient. Journal of Volcanology and Geothermal Research, 1989, 39, 355-356.	0.8	0
94	Widespread, lavalike silicic volcanic rocks of Trans-Pecos Texas. Geology, 1988, 16, 509.	2.0	45
95	Wairakei Formation, New Zealand: Stratigraphy and correlation. New Zealand Journal of Geology, and Geophysics, 1988, 31, 391-396.	1.0	2
96	Volcanology. Reviews of Geophysics, 1987, 25, 1065-1078.	9.0	3
97	Comments on "the petrology of Tambora volcano, Indonesia: a model for the 1815 eruption―by J. Foden. Journal of Volcanology and Geothermal Research, 1987, 31, 163-166.	0.8	4
98	Quaternary silicic pyroclastic deposits of Atitlán Caldera, Guatemala. Journal of Volcanology and Geothermal Research, 1987, 33, 57-80.	0.8	40
99	Wairakei Formation, New Zealand: Stratigraphy and correlation. New Zealand Journal of Geology, and Geophysics, 1987, 30, 73-86.	1.0	19
100	Collapsing Volcanoes. Scientific American, 1987, 256, 90-97.	1.0	164
101	Vent sites and flow directions of the Otowi ash flows (lower Bandelier Tuff), New Mexico: Discussion and reply. Bulletin of the Geological Society of America, 1987, 99, 601.	1.6	0
102	Basaltic fissure eruptions, plume heights, and atmospheric aerosols. Geophysical Research Letters, 1986, 13, 725-728.	1.5	97
103	Timing of events during the late Proterozoic Beardmore Orogeny, Antarctica: Geological evidence from the La Gorce Mountains. Bulletin of the Geological Society of America, 1986, 97, 953.	1.6	25
104	Climatic effects of Volcanic eruptions. Nature, 1985, 313, 272-272.	13.7	20
105	Extension and rotation of crustal blocks in northern Central America and effect on the volcanic arc. Geology, 1985, 13, 22.	2.0	150
106	Sulphur-rich volcanic eruptions and stratospheric aerosols. Nature, 1984, 310, 677-679.	13.7	161
107	Tarawera 1886, New Zealand — A basaltic plinian fissure eruption. Journal of Volcanology and Geothermal Research, 1984, 21, 61-78.	0.8	215
108	The Cooke-Ravian volume of volcanological papers. Journal of Volcanology and Geothermal Research, 1983, 19, 189-191.	0.8	0

#	Article	IF	CITATIONS
109	The October 1902 plinian eruption of Santa Maria volcano, Guatemala. Journal of Volcanology and Geothermal Research, 1983, 16, 33-56.	0.8	162
110	Large-scale phreatomagmatic silicic volcanism: A case study from New Zealand. Journal of Volcanology and Geothermal Research, 1983, 17, 433-469.	0.8	118
111	Structural lineaments and neogene volcanism in southwestern Luzon. Geophysical Monograph Series, 1983, , 157-172.	0.1	30
112	Aspects of Potential Magmatic Disruption of a High-Level Radioactive Waste Repository in Southern Nevada. Journal of Geology, 1983, 91, 259-276.	0.7	41
113	The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 1982, 87, 1231-1238.	3.3	1,510
114	Comments on "a geophysical interpretation of the 1883 krakatau eruption―by I. Yokoyama. Journal of Volcanology and Geothermal Research, 1982, 13, 379-383.	0.8	15
115	Historic Eruptions of Tambora (1815), Krakatau (1883), and Agung (1963), their Stratospheric Aerosols, and Climatic Impact. Quaternary Research, 1982, 18, 127-143.	1.0	213
116	The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. Journal of Volcanology and Geothermal Research, 1981, 11, 41-60.	0.8	162
117	The 1883 eruption of Krakatau. Nature, 1981, 294, 699-704.	13.7	230
118	Ukinrek Maars, Alaska, I. April 1977 eruption sequence, petrology and tectonic setting. Journal of Volcanology and Geothermal Research, 1980, 7, 11-37.	0.8	167
119	A working terminology of pyroc lstic deposits. Journal of Volcanology and Geothermal Research, 1980, 8, 315-336.	0.8	179
120	Ukinrek Maars, Alaska, II. Deposits and formation of the 1977 craters. Journal of Volcanology and Geothermal Research, 1980, 7, 39-65.	0.8	205
121	The Recent volcanology of Terceira, Azores. Journal of the Geological Society, 1976, 132, 645-666.	0.9	100
122	Petrology, volume and age relations of alkaline and saturated peralkaline volcanics from Terceira, Azores. Contributions To Mineralogy and Petrology, 1976, 54, 293-313.	1.2	58
123	Explosive activity of Ngauruhoe, 27–30 March 1974. New Zealand Journal of Geology, and Geophysics, 1975, 18, 189-195.	1.0	4
124	Emplacement of Continental Flood Basalt Lava Flows. Geophysical Monograph Series, 0, , 381-410.	0.1	132