Genevieve Metson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6262696/publications.pdf Version: 2024-02-01

		393982	395343
42	1,204	19	33
papers	citations	h-index	g-index
43	43	43	1482
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global phosphorus flows through agricultural trade. Global Environmental Change, 2018, 50, 133-141.	3.6	124
2	The role of diet in phosphorus demand. Environmental Research Letters, 2012, 7, 044043.	2.2	114
3	Urban phosphorus sustainability: Systemically incorporating social, ecological, and technological factors into phosphorus flow analysis. Environmental Science and Policy, 2015, 47, 1-11.	2.4	112
4	Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Science of the Total Environment, 2016, 542, 1117-1126.	3.9	84
5	Global Opportunities to Increase Agricultural Independence Through Phosphorus Recycling. Earth's Future, 2019, 7, 370-383.	2.4	62
6	Urban Ecological Infrastructure: An inclusive concept for the non-built urban environment. Elementa, 2019, 7, .	1.1	54
7	Phosphorus in Phoenix: a budget and spatial representation of phosphorus in an urban ecosystem. Ecological Applications, 2012, 22, 705-721.	1.8	52
8	Linking terrestrial phosphorus inputs to riverine export across the United States. Water Research, 2017, 124, 177-191.	5.3	50
9	Phosphorus Cycling in Montreal's Food and Urban Agriculture Systems. PLoS ONE, 2015, 10, e0120726.	1.1	45
10	Variability in ecosystem service measurement: a pollination service case study. Frontiers in Ecology and the Environment, 2013, 11, 414-422.	1.9	41
11	Quantifying the foodshed: a systematic review of urban food flow and local food self-sufficiency research. Environmental Research Letters, 2021, 16, 023003.	2.2	37
12	Enhancing nutrient recycling from excreta to meet crop nutrient needs in Sweden – a spatial analysis. Scientific Reports, 2019, 9, 10264.	1.6	31
13	Phosphorus Inventory for the Conterminous United States (2002–2012). Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005684.	1.3	31
14	New Training to Meet the Global Phosphorus Challenge. Environmental Science & Technology, 2019, 53, 8479-8481.	4.6	29
15	The surprisingly small but increasing role of international agricultural trade on the European Union's dependence on mineral phosphorus fertiliser. Environmental Research Letters, 2016, 11, 025003.	2.2	28
16	Potential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City. Frontiers in Nutrition, 2016, 3, 35.	1.6	28
17	Efficiency Through Proximity. Journal of Industrial Ecology, 2012, 16, 914-927.	2.8	25
18	Excess phosphorus from compost applications in urban gardens creates potential pollution hotspots. Environmental Research Communications, 2019, 1, 091007.	0.9	22

GENEVIEVE METSON

#	Article	IF	CITATIONS
19	P-FUTURES: towards urban food & water security through collaborative design and impact. Current Opinion in Environmental Sustainability, 2016, 20, 1-7.	3.1	20
20	The U.S. consumer phosphorus footprint: where do nitrogen and phosphorus diverge?. Environmental Research Letters, 2020, 15, 105022.	2.2	19
21	Modeling phosphorus in rivers at the global scale: recent successes, remaining challenges, and near-term opportunities. Current Opinion in Environmental Sustainability, 2019, 36, 68-77.	3.1	18
22	Socio-environmental consideration of phosphorus flows in the urban sanitation chain of contrasting cities. Regional Environmental Change, 2018, 18, 1387-1401.	1.4	17
23	Conventional Sewer Systems Are Too Time-Consuming, Costly and Inflexible to Meet the Challenges of the 21st Century. Sustainability, 2020, 12, 6518.	1.6	17
24	Key factors for site-selection of biogas plants in Sweden. Journal of Cleaner Production, 2022, 354, 131671.	4.6	15
25	Synergies and Trade-Offs for Sustainable Food Production in Sweden: An Integrated Approach. Sustainability, 2019, 11, 601.	1.6	14
26	Plant-based diets add to the wastewater phosphorus burden. Environmental Research Letters, 2020, 15, 094018.	2.2	12
27	Phosphorus is a key component of the resource demands for meat, eggs, and dairy production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4906-7.	3.3	11
28	Closing Pakistan's Yield Gaps Through Nutrient Recycling. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	10
29	Optimizing Nutrient Recycling From Excreta in Sweden and Pakistan: Higher Spatial Resolution Makes Transportation More Attractive. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	9
30	Swedish food system transformations: Rethinking biogas transport logistics to adapt to localized agriculture. Sustainable Production and Consumption, 2022, 29, 370-386.	5.7	9
31	Not all sites are created equal – Exploring the impact of constraints to suitable biogas plant locations in Sweden. Journal of Cleaner Production, 2022, 349, 131390.	4.6	9
32	Facilitators & barriers to organic waste and phosphorus re-use in Montreal. Elementa, 2015, 3, .	1.1	8
33	Where Have All the Nutrients Gone? Longâ€Term Decoupling of Inputs and Outputs in the Willamette River Watershed, Oregon, United States. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005792.	1.3	7
34	Optimizing transport to maximize nutrient recycling and green energy recovery. Resources Conservation & Recycling X, 2020, 9-10, 100049.	4.2	7
35	Mapping phosphorus hotspots in Sydney's organic wastes: a spatially explicit inventory to facilitate urban phosphorus recycling. Journal of Urban Ecology, 2018, 4,	0.6	6
36	Nitrogen and the food system. One Earth, 2021, 4, 3-7.	3.6	6

GENEVIEVE METSON

#	Article	IF	CITATIONS
37	A Review of Nutrient Losses to Waters From Soil- and Ground-Based Urban Agriculture—More Nutrient Balances Than Measurements. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	6
38	Would a sustainable city be self-sufficient in food production?. International Journal of Design and Nature and Ecodynamics, 2019, 14, 178-194.	0.3	5
39	Technologies for recovery and reuse of plant nutrients from human excreta and domestic wastewater: a protocol for a systematic map and living evidence platform. Environmental Evidence, 2021, 10, .	1.1	4
40	Applying the sustainable system-of-systems framework: wastewater(s) in a rapidly urbanising South African settlement. Ergonomics, 2022, , 1-17.	1.1	3
41	Introduction to P Sustainability. , 2013, , 1-19.		1
42	Phosphorus in Urban and Agricultural Landscapes. , 2013, , 86-111.		0

Phosphorus in Urban and Agricultural Landscapes. , 2013, , 86-111. 42